Ceramic cores are widely used in investment casting,and ideal properties of cores are essential for high-quality castings.Under the circumstances requiring thick cores,solid cores are likely to encounter deformation a...Ceramic cores are widely used in investment casting,and ideal properties of cores are essential for high-quality castings.Under the circumstances requiring thick cores,solid cores are likely to encounter deformation and cracking defects due to the accumulation of shrinkage.Therefore,with the superiority of ceramic stereolithography in producing complex ceramic parts,hollow cores with lattice structures were designed and fabricated.The dimensional accuracy and properties of the green and sintered bodies were evaluated.Results show the dimensional accuracy of sintered cores is controlled within±0.25 mm benefited from the precise green bodies.The mechanical properties are not obviously deteriorated.The bending strength reaches 11.94 MPa at room temperature and 12.87 MPa at 1,500℃ with a creep deformation of 0.345 mm.Furthermore,casting verifications prove that the hollow cores meet the requirements of investment casting.Smooth casting surfaces are obtained,at the same time,the core-removal efficiency is improved by over 3 times.展开更多
During sintering of the silica-based ceramic core of turbine blades,a phenomenon called"nonuniform sintering"occurs that negatively affects the thermal and mechanical properties of the core.Standard samples ...During sintering of the silica-based ceramic core of turbine blades,a phenomenon called"nonuniform sintering"occurs that negatively affects the thermal and mechanical properties of the core.Standard samples of silica-based core were prepared by an injection molding method and sintered with alumina backfilling powder with different sodium contents.The effect of sodium content on the nonuniform sintering of silica-based cores and the thermal and mechanical properties was evaluated.Results show that the sintering level and the content ofα-cristobalite in the surface layer are significantly higher than that of the sample interior.A considerable number of microcracks are found in the surface layer due to theβtoα-phase transition of cristobalite.As the sodium content in the alumina powder decreases,the level of the nonuniform sintering and the amount of crystallized cristobalite in the surface layer decrease,which is beneficial to the thermal expansion and flexural strength at ambient temperature.The flexural strength and thermal deformation at high temperature are improved by reducing the surface cracks,but deteriorated with the decrease of the cristobalite crystallization when the surface cracks are macroscopically invisible.展开更多
Fused corundum is a rather promising raw material for preparing an alumina-based ceramic core due to its excellent high temperature resistance and chemical inertness.In this study,alumina-based ceramic cores were prep...Fused corundum is a rather promising raw material for preparing an alumina-based ceramic core due to its excellent high temperature resistance and chemical inertness.In this study,alumina-based ceramic cores were prepared using fused corundum as the matrix material,and the effect of varying silica powder contents on the properties of the alumina-based ceramic cores,including the sintering shrinkage,the flexural strength,and the high temperature deformation was investigated.The mineralization mechanisms of the silica on the alumina-based ceramic core were also analyzed.The optimum addition amount of silica in this experiment is 8% in weight.At that moment,the aluminum-based core has both a low sintering shrinkage coefficient of 0.66% and better properties:the room temperature flexural strength is 22.19 MPa,the high temperature flexural strength is 21.54 MPa,the high temperature deformation is 0.93 mm,and the residual flexural strength is 47.41 MPa.展开更多
Water-soluble salt-based ceramic cores can be recycled and have excellent high-temperature chemical stability.In this work,vat photopolymerization was successfully applied to water-soluble salt-based ceramic cores for...Water-soluble salt-based ceramic cores can be recycled and have excellent high-temperature chemical stability.In this work,vat photopolymerization was successfully applied to water-soluble salt-based ceramic cores for the first time.The powder raw materials of the printing suspension were sodium chloride and alumina.High-precision green bodies were manufactured by optimizing suspensions and parameters.In addition,the postprocessing method was optimized according to the microstructure and mechanical properties.The sintered part had a high bending strength and smooth surface.Finally,the dissolution rate and moisture resistance were compared under different dissolution and storage conditions.Compared to traditional manufacturing methods,vat photopolymerization enables the production of complex structures without molds and reduces production costs.This technology is suitable for the rapid iteration of complex structural parts and can be applied to precision parts in aerospace,military,and other technical fields with high cost-effectiveness and sustainability.展开更多
With the improvement of aero-engine performance,the preparation of hollow blades of single-crystal superalloys with complex inner cavity cooling structures is becoming increasingly urgent.The ceramic core is the key i...With the improvement of aero-engine performance,the preparation of hollow blades of single-crystal superalloys with complex inner cavity cooling structures is becoming increasingly urgent.The ceramic core is the key intermediate part of the preparation and has attracted wide attention.To meet this challenge,new technologies that can make up for the defects of long periods and high costs of fabricating complex structural cores by traditional hot injection technology are needed.Vat photopolymerization 3D printing ceramic technology has been applied to the core field to realize the rapid preparation of complex structural cores.However,the industrial application of this technology still needs further research and improvement.Herein,ceramic cores were prepared using traditional hot injection and vat photopolymerization 3D printing techniques using fused silica,nano-ZrO_(2),and Al_(2)O_(3) powders as starting materials.The 3D printed ceramic core has a typical layered structure with a small pore size and low porosity.Because of the layered structure,the pore area is larger than that of the hot injection ceramic core,the leaching performance has little effect(0.0277 g/min for 3D printing cores,0.298 g/min for hot injection cores).In the X and Y directions,the sintering shrinkage is low(2.7%),but in the Z direction,the shrinkage is large(4.7%).The fracture occurs when the inner layer crack expands and connects with the interlayer crack,forming a stepped fracture in the 3D-printed cores.The bending strength of the 3D printed core at high temperature(1500℃)is 17.3 MPa.These analyses show that the performance of vat photopolymerization 3D-printed ceramic cores can meet the casting requirements of single crystal superalloy blades,which is a potential technology for the preparation of complex structure ceramic cores.The research mode of 3D printing core technology based on the traditional hot injection process provides an effective new idea for promoting the industrial application of 3D printing core technology.展开更多
The silica-based ceramic core has attracted much attention in the preparation of hollow blades due to its great leachability.In this paper,the silica-based ceramic cores reinforced with ZrSiO_(4) were prepared by lase...The silica-based ceramic core has attracted much attention in the preparation of hollow blades due to its great leachability.In this paper,the silica-based ceramic cores reinforced with ZrSiO_(4) were prepared by laser powder bed fusion(LPBF)combined with vacuum infiltration(VI).To enhance the infiltration effect,the pre-sintered bodies with high porosity and hydrophilicity were obtained by pre-sintering at 1100℃.Results showed that a large number of silica particles infiltrated into the pre-sintered bodies.The infiltrated silica promoted the generation of liquid phase in sintering,thereby promoting the removal of pores and the connection of grains.Nevertheless,the dispersed ZrSiO_(4) grains prevented the viscous flow of the liquid phase,thereby increasing the porosity.ZrSiO_(4) grains could hinder the propagation of cracks due to their high strength.When the addition of ZrSiO_(4) was 10 wt.%,room-temperature flexural strength of silica-based ceramic cores infiltrated with slurry S1(the mass ratio of silica sol to silica powder was 10:1)reached 17.21 MPa due to the reinforcement of sintering necks.Moreover,high-temperature flexural strength reached 13.90 MPa.Therefore,the pre-sintering process could greatly improve the mechanical properties of silica-based ceramic cores prepared by LPBF-VI technology.展开更多
In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize ph...In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize phase transformations in the samples, and the XRD result indicated that the addition of alumina pro- moted crystallization of fused silica during sintering at 1180-1220 ℃ and thus increases the amount of cristobalite. The increased amount of cristobalite as well as alumina addition led to much more thermal dilation due to their higher coefficients of thermal expansion than that of fused silica. The flexural strengths at room temperature and 1500 ~C were tested, and it was shown that alumina addition could not affect room temperature strength, but decreased the flexural strength at 1500 ℃. In addition, deflection resis- tance during heating to high temperatures was investigated, and the result indicated that alumina addition speeded up high temperature softening of the samples. XRD and scanning electron microscopy equipped with energy dispersive spectrometry (SEMJEDS) analysis suggested that this softening behavior was related with viscous flow sintering which could be accelerated by the reaction of alumina and silica with a product of mullite.展开更多
Silica-based ceramic cores have been widely used to fabricate aero-engine hollow blades due to their moderate high temperature mechanical properties and excellent leachability.In this study,silica-based ceramics with ...Silica-based ceramic cores have been widely used to fabricate aero-engine hollow blades due to their moderate high temperature mechanical properties and excellent leachability.In this study,silica-based ceramics with SiC fiber addition were prepared via stereolithography,and the influence of SiC fiber content on mechanical properties of the obtained silica-based ceramics was investigated.With the increase of SiC fiber content,linear shrinkage gradually decreased,while room temperature flexural strength and high temperature flexural strength first increased and then decreased.As SiC fiber content increased to 4.0 wt%,linear shrinkage was reduced to 0.62%resulting from the oxidation of SiC.Furthermore,room temperature flexural strength was improved from 11.79 MPa to 23.83 MPa and high temperature flexural strength was enhanced from 15.64 MPa to 34.62 MPa with 4.0 wt%SiC fiber addition due to the reinforcement of fibers and the enhancedβ-cristobalite content,which meets the need of ceramic cores.Therefore,it demonstrates the capability of fabricating high-performance and high-precision silica-based ceramic cores reinforced by SiC fibers via stereolithography for rapid manufacturing of hollow blades.展开更多
The increasing demand for geometrically complex structures—specifically, higher-inlet-temperature turbine blades for the fifth-generation or other high-generation machines of advanced fighter aircrafts—hasmade the d...The increasing demand for geometrically complex structures—specifically, higher-inlet-temperature turbine blades for the fifth-generation or other high-generation machines of advanced fighter aircrafts—hasmade the development of more complex double-walled three-layer hollow-cavity structures a necessity.However, this requires the preparation of complex ceramic cores and advanced, integrated technologies.Stereolithographic three-dimensional printing (SLA-3DP) technology, with digital control upon materialmorphology, composition, and structure, is a high integration and versatile technique that is superior tothe traditional manufacturing techniques for ceramic cores, including gel casting, injection molding, andhot pressing. The latent capacity of this technique is contingent on the progress of processing routesthat significantly reduce the distortion and defect formation in response to the elimination of the reactedorganic monomer phase during photo-curing. Despite the tremendous progress in the field, multiple challenges remain, such as the preparation of high-solid-content and low-viscosity suspensions, SLA-3DP oflarge double-walled ceramic cores with complex structures, and process optimization and sinter strengthening for the fabrication of ceramic cores. These challenges have prevented the broader applications andreduced the impact of the SLA-3DP technology. This review discusses cutting-edge research on the crucialfactors governing this production method. Specifically, we outline the existing challenges within the fieldand provide our perspective on the upcoming research work and progress.展开更多
Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in formi...Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.展开更多
Silica ceramic cores have played an important part in the manufacture of hollow blades due to their excellent chemical stability and moderate high-temperature mechanical properties.In this study,silica-based ceramics ...Silica ceramic cores have played an important part in the manufacture of hollow blades due to their excellent chemical stability and moderate high-temperature mechanical properties.In this study,silica-based ceramics were prepared with Al_(2)0_(3) addition by stereolithography,and the influence of Al_(2)0_(3) content on mechanical properties of the silica-based ceramics was investigated.The Al_(2)0_(3) in silica-based ceramics can improve the mechanical properties by playing a role as a seed for the crystallization of fused silica into cristobalite.As a result,with the increase of Al_(2)0_(3) content,the linear shrinkage of the silica-based ceramics first decreased and then increased,while the room-temperature flexural strength and the high-temperature flexural strength first increased and then decreased.As the Al_(2)0_(3) content increased to 1.0 vol%,the linear shrinkage was reduced to 1.64%because of the blocked viscous flow caused by Al_(2)0_(3).Meanwhile,the room-temperature flexural strength and the high-temperature flexural strength were improved to 20.38 and 21.43 MPa with 1.0 vol%Al_(2)0_(3),respectively,due to the increased a-cristobalite and P-cristobalite content.Therefore,using the optimal content of Al_(2)0_(3) in silica-based ceramics can provide excellent mechanical properties,which are suitable for the application of ceramic cores in the manufacturing of hollow blades.展开更多
The precision casting method based on aluminabased ceramic cores is one of the main techniques used to manufacture hollow turbine blades.Additive manufacturing(AM)technology provides an alternate solution to fabricati...The precision casting method based on aluminabased ceramic cores is one of the main techniques used to manufacture hollow turbine blades.Additive manufacturing(AM)technology provides an alternate solution to fabricating ceramic cores quickly and precisely.As the complexity of the structure increases and the strength of the material improves,the leaching process of the cores becomes more complicated.This study proposes a compound pore-forming method to increase the porosity of ceramic cores by adding a preformed-pore agent and materials that convert to easy-to-corrode phases.The preformed-pore agents(e.g.,carbon fibers)can be burned off during sintering to form pores before the leaching,and the easy-to-corrode phases(e.g.,CaCO3,SiO2,^-A12O3)can be leached firstly to form pores during the leaching process.The pores formed in the aforementioned two stages increase the contact area of the cores and leaching solution,thus improving the leaching rate.In the current study,the additive amount of the preformed-pore agent was optimized,and the effect of the easy-to-corrode phases on the comprehensive properties of the cores was then compared.Based on this,the corresponding model was established.展开更多
Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic core...Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic cores due to the complexity of moulds and long process cycles.Stereolithography 3D printing provides a new idea for the fabrication of complex-structured ceramic cores.The effect of sintering temperature on open porosity,bulk density,weight loss rate,shrinkage rate,flexural strength and microstructure of the Al_(2)O_(3)-based ceramic core doped with 10vol.%polysilazane(PSZ)was studied.The sintering mechanism of PSZ-reinforced ceramic cores was analyzed.Results show that the optimum sintering temperature of PSZ-reinforced ceramic cores is 1,450°C.At this temperature,the open porosity of the ceramic core is 36.60%,bulk density is 2.33 g·cm^(-3),weight loss rate is 22.11%,shrinkage rate along the X,Y,Z directions is 5.72%,5.01%,9.61%,respectively;the flexural strength is 28.794 MPa at 25°C and 13.649 MPa at 1,500°C.Properties of 3D printing PSZ-reinforced ceramic cores can meet the casting requirement of superalloy hollow blades,which is expected to promote the industrial application of 3D printing complex structure ceramic cores.展开更多
Vat photopolymerization 3D printing ceramic technology provides a feasible process for the preparation of complex internal cooling channels for aeroengine single crystal superalloy hollow blades.However,the typical la...Vat photopolymerization 3D printing ceramic technology provides a feasible process for the preparation of complex internal cooling channels for aeroengine single crystal superalloy hollow blades.However,the typical layered structure characteristics of 3D printing ceramic technology led to the anisotropy of ceramic core strength and sintering shrinkage,which greatly affects the performance and accuracy of the complex structure core and requires further research and improvement.Herein,the influence of the thickness of the slurry layer on the flow characteristics of the slurry in the process of the vat photopolymerization 3D printing slurry spreading was systematically studied by the method of simulation and experiment.The simulation results show that the positions of the turbulent zone and maximum velocity zone in the scraper front affect the redistribution of powder particles with different sizes.The layered structure was caused by the redistribution of ceramic particles of different sizes in the slurry layer.By controlling the turbulent flow zone and the maximum velocity zone of the scraper leading edge,the phenomenon of laminar flow can be weakened and the particle redistribution can be improved.With the increase of the thickness of the printing layer,the layered structure appears gradually,and the pores at the interface of the layered structure gradually concentrated into the interfacial pore lines from the uniform distribution,and the crack propagation changes from intergranular micro-crack to interlayer macro-crack.The combination of finite element simulation and experiment,through the slurry flow characteristics to control the layered structure of reductive vat photopolymerization ceramic core 3D printing,the control of crack propagation mode,element distribution and pore evolution of the core was accomplished,which lays a foundation for the performance control of ceramic 3D printing technology.展开更多
Research and development of cast superalloys and processing for turbine blades in BIAM during the last 35 years have been reviewed briefly in this paper.
A new technology for detecting a tiny residual core in the small inner cavity of complex castings is proposed. The residual core is identified by using image recognition technology. Tracer processing and image signal ...A new technology for detecting a tiny residual core in the small inner cavity of complex castings is proposed. The residual core is identified by using image recognition technology. Tracer processing and image signal processing are combined to enhance the image contrast. The relationships between the concentration of tracer, the size of the residual core, the wall thickness of the castings and the contrast were obtained. Based on the experimental data, the minimum detectable amount of residual core under different conditions was obtained. The results show that the minimum detectable amount decreases from 4.398 mg to 0.438 mg for the 1.0 mm wall thickness casting when the concentration of tracer increases from 0% to 20%. The signal-to-noise ratio(SNR) of the detection results increases by 27.010 by means of average filtering and linear point operation. The subtraction of image and image background was performed, and then the boundary extraction was carried out to obtain a clear and reliable result. The experimental results show that the non-traced residual core cannot be detected for a blade with a thickness less than 5 mm. The residual core of 1 mm thickness can be barely identified by artificial recognition after tracer processing and image processing, while the residual core of 0.6 mm thickness can be detected clearly using image recognition technology.展开更多
High porosity and high strength are usually mutually exclusive in the preparation of ceramic materials.However,high porosity and flexural strength are required for the preparation of complex ceramic cores for hollow t...High porosity and high strength are usually mutually exclusive in the preparation of ceramic materials.However,high porosity and flexural strength are required for the preparation of complex ceramic cores for hollow turbine blades.In this study,Al_(2)O_(3)cores with high porosity and high flexural strength were successfully prepared using digital light processing(DLP)3 D printing technology.The influence of sintering temperature on the microstructure,pore evolution,and flexural strength of the cores were investigated.With an increase in the sintering temperature,the porosity of the ceramic cores first increased and then decreased,reaching a maximum value of 35%at 1400℃.The flexural strength increased with the increase in sintering temperature,but at 1400℃the incremental enhancement of flexural strength was greatest.Combined with the core service requirements and core performance,this study selected 1400℃(open porosity of 35.1%and flexural strength of 20.3 MPa)as the optimal sintering temperature for the DLP-3 D printed Al_(2)O_(3)core.展开更多
The deviation in wall thickness caused by core shift during the investment casting process significantly impacts the strength and service life of hollow turbine blades.To address this issue,a core shift limitation met...The deviation in wall thickness caused by core shift during the investment casting process significantly impacts the strength and service life of hollow turbine blades.To address this issue,a core shift limitation method is developed in this study.Firstly,a shift model is established based on computational fluid dynamics and motion simulation to predict the movement of the ceramic core in investment casting process.Subsequently,utilizing this model,an optimization method for fixturing layout inside the refractory ceramic shell is devised for the ceramic core.The casting experiment demonstrates that by utilizing the optimized fixture layout,not only can core shift during the investment casting pouring process be effectively controlled,but also the maximum wall thickness error of the blade can be reduced by 42.02%.In addition,the core shift prediction is also validated,with a prediction error of less than 26.9%.展开更多
Ceramic core is a critical component in the super-alloy turbine blade casting.In our previous work,a novel multi-phase MgAl_(2)O_(4)/MgO porous ceramic was prepared for this purpose.The most important property was tha...Ceramic core is a critical component in the super-alloy turbine blade casting.In our previous work,a novel multi-phase MgAl_(2)O_(4)/MgO porous ceramic was prepared for this purpose.The most important property was that it crumbled completely after hydrothermal treatment in just pure water,due to the hydration of MgO.In this work,the hydration process of the MgO embedded in the inert matrix was investigated in detail.The collapse behaved as an interior destruction without any bulk expansion of the sample.The hydration percentage was the only factor related to the water-collapsibility.The morphology of hydration product indicated that the reaction advanced in particular direction.Based on the finite element analysis for the expansion effect on the porous structure,the interiorcollapsing mechanism was proposed.During the hydration process,the MgO grains exerted pressure to the surrounding matrix and induced the collapse in the adjacent structure.This process took place throughout the matrix.Finally,the sample crumbled completely to the powders.No bulk dilatation was detected before the powdering,indicating that the collapse process would not exert pressure outward.Thus the alloy blade would not be damaged during the removal of the ceramic core.It was also predicted that the decrease in the MgO grain size was beneficial to the water-collapsibility.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 52175333)Tribology Science Fund of the State Key Laboratory of Tribology,Tsinghua University (Grant No. SKLT2021B05)+1 种基金Foshan Science and Technology Innovation Team Project (Grant No. 2018IT100142)National Science and Technology Major Project of China (Grant No. J2019-VII-0002-0142)
文摘Ceramic cores are widely used in investment casting,and ideal properties of cores are essential for high-quality castings.Under the circumstances requiring thick cores,solid cores are likely to encounter deformation and cracking defects due to the accumulation of shrinkage.Therefore,with the superiority of ceramic stereolithography in producing complex ceramic parts,hollow cores with lattice structures were designed and fabricated.The dimensional accuracy and properties of the green and sintered bodies were evaluated.Results show the dimensional accuracy of sintered cores is controlled within±0.25 mm benefited from the precise green bodies.The mechanical properties are not obviously deteriorated.The bending strength reaches 11.94 MPa at room temperature and 12.87 MPa at 1,500℃ with a creep deformation of 0.345 mm.Furthermore,casting verifications prove that the hollow cores meet the requirements of investment casting.Smooth casting surfaces are obtained,at the same time,the core-removal efficiency is improved by over 3 times.
基金funded by the Shenzhen Development and Reform Commission Project(SZDRC 20181000)made possible through funding from the Wedge Central South Research Institute,Chinasupported by the State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,China。
文摘During sintering of the silica-based ceramic core of turbine blades,a phenomenon called"nonuniform sintering"occurs that negatively affects the thermal and mechanical properties of the core.Standard samples of silica-based core were prepared by an injection molding method and sintered with alumina backfilling powder with different sodium contents.The effect of sodium content on the nonuniform sintering of silica-based cores and the thermal and mechanical properties was evaluated.Results show that the sintering level and the content ofα-cristobalite in the surface layer are significantly higher than that of the sample interior.A considerable number of microcracks are found in the surface layer due to theβtoα-phase transition of cristobalite.As the sodium content in the alumina powder decreases,the level of the nonuniform sintering and the amount of crystallized cristobalite in the surface layer decrease,which is beneficial to the thermal expansion and flexural strength at ambient temperature.The flexural strength and thermal deformation at high temperature are improved by reducing the surface cracks,but deteriorated with the decrease of the cristobalite crystallization when the surface cracks are macroscopically invisible.
基金financially supported by the National Science and Technology Major Project of Aero Engine and Gas Turbine(2017-Ⅶ-0008)。
文摘Fused corundum is a rather promising raw material for preparing an alumina-based ceramic core due to its excellent high temperature resistance and chemical inertness.In this study,alumina-based ceramic cores were prepared using fused corundum as the matrix material,and the effect of varying silica powder contents on the properties of the alumina-based ceramic cores,including the sintering shrinkage,the flexural strength,and the high temperature deformation was investigated.The mineralization mechanisms of the silica on the alumina-based ceramic core were also analyzed.The optimum addition amount of silica in this experiment is 8% in weight.At that moment,the aluminum-based core has both a low sintering shrinkage coefficient of 0.66% and better properties:the room temperature flexural strength is 22.19 MPa,the high temperature flexural strength is 21.54 MPa,the high temperature deformation is 0.93 mm,and the residual flexural strength is 47.41 MPa.
基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2021160)the National Natural Science Foundation of China(No.51802319)the Technology and Engineering Center for Space(No.CSU-QZKT-2019-04).
文摘Water-soluble salt-based ceramic cores can be recycled and have excellent high-temperature chemical stability.In this work,vat photopolymerization was successfully applied to water-soluble salt-based ceramic cores for the first time.The powder raw materials of the printing suspension were sodium chloride and alumina.High-precision green bodies were manufactured by optimizing suspensions and parameters.In addition,the postprocessing method was optimized according to the microstructure and mechanical properties.The sintered part had a high bending strength and smooth surface.Finally,the dissolution rate and moisture resistance were compared under different dissolution and storage conditions.Compared to traditional manufacturing methods,vat photopolymerization enables the production of complex structures without molds and reduces production costs.This technology is suitable for the rapid iteration of complex structural parts and can be applied to precision parts in aerospace,military,and other technical fields with high cost-effectiveness and sustainability.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3702500,2018YFB1106600)the National Science and Technology Major Project(Nos.2019-VII-0019-0161 andY2019-VII-0011-0151)the Fundamental Research Funds for the Central Universities(No.WK5290000003).
文摘With the improvement of aero-engine performance,the preparation of hollow blades of single-crystal superalloys with complex inner cavity cooling structures is becoming increasingly urgent.The ceramic core is the key intermediate part of the preparation and has attracted wide attention.To meet this challenge,new technologies that can make up for the defects of long periods and high costs of fabricating complex structural cores by traditional hot injection technology are needed.Vat photopolymerization 3D printing ceramic technology has been applied to the core field to realize the rapid preparation of complex structural cores.However,the industrial application of this technology still needs further research and improvement.Herein,ceramic cores were prepared using traditional hot injection and vat photopolymerization 3D printing techniques using fused silica,nano-ZrO_(2),and Al_(2)O_(3) powders as starting materials.The 3D printed ceramic core has a typical layered structure with a small pore size and low porosity.Because of the layered structure,the pore area is larger than that of the hot injection ceramic core,the leaching performance has little effect(0.0277 g/min for 3D printing cores,0.298 g/min for hot injection cores).In the X and Y directions,the sintering shrinkage is low(2.7%),but in the Z direction,the shrinkage is large(4.7%).The fracture occurs when the inner layer crack expands and connects with the interlayer crack,forming a stepped fracture in the 3D-printed cores.The bending strength of the 3D printed core at high temperature(1500℃)is 17.3 MPa.These analyses show that the performance of vat photopolymerization 3D-printed ceramic cores can meet the casting requirements of single crystal superalloy blades,which is a potential technology for the preparation of complex structure ceramic cores.The research mode of 3D printing core technology based on the traditional hot injection process provides an effective new idea for promoting the industrial application of 3D printing core technology.
基金financially supported by National Science and Technology Major Project(No.2017-Ⅶ−0008-0102)National Nat-ural Science Foundation of China(No.51975230)Fundamental Research Funds for the Central Universities(Nos.2019kfyXMPY020,2020kfyFPZX003,2018KFYYXJJ030 and 2019kfyXKJC011)。
文摘The silica-based ceramic core has attracted much attention in the preparation of hollow blades due to its great leachability.In this paper,the silica-based ceramic cores reinforced with ZrSiO_(4) were prepared by laser powder bed fusion(LPBF)combined with vacuum infiltration(VI).To enhance the infiltration effect,the pre-sintered bodies with high porosity and hydrophilicity were obtained by pre-sintering at 1100℃.Results showed that a large number of silica particles infiltrated into the pre-sintered bodies.The infiltrated silica promoted the generation of liquid phase in sintering,thereby promoting the removal of pores and the connection of grains.Nevertheless,the dispersed ZrSiO_(4) grains prevented the viscous flow of the liquid phase,thereby increasing the porosity.ZrSiO_(4) grains could hinder the propagation of cracks due to their high strength.When the addition of ZrSiO_(4) was 10 wt.%,room-temperature flexural strength of silica-based ceramic cores infiltrated with slurry S1(the mass ratio of silica sol to silica powder was 10:1)reached 17.21 MPa due to the reinforcement of sintering necks.Moreover,high-temperature flexural strength reached 13.90 MPa.Therefore,the pre-sintering process could greatly improve the mechanical properties of silica-based ceramic cores prepared by LPBF-VI technology.
文摘In this work, the influences of alumina addition on cristobalite crystallization and properties of injec- tion molded silica-based ceramic cores were investigated. X-ray diffraction (XRD) was used to characterize phase transformations in the samples, and the XRD result indicated that the addition of alumina pro- moted crystallization of fused silica during sintering at 1180-1220 ℃ and thus increases the amount of cristobalite. The increased amount of cristobalite as well as alumina addition led to much more thermal dilation due to their higher coefficients of thermal expansion than that of fused silica. The flexural strengths at room temperature and 1500 ~C were tested, and it was shown that alumina addition could not affect room temperature strength, but decreased the flexural strength at 1500 ℃. In addition, deflection resis- tance during heating to high temperatures was investigated, and the result indicated that alumina addition speeded up high temperature softening of the samples. XRD and scanning electron microscopy equipped with energy dispersive spectrometry (SEMJEDS) analysis suggested that this softening behavior was related with viscous flow sintering which could be accelerated by the reaction of alumina and silica with a product of mullite.
基金supported by National Science and Technology Major Project(no.2017-Ⅶ-0008-0102)National Natural Science Foundation of China(no.51975230)Fundamental Research Funds for the Central Universities(nos.2019kfy XMPY020,2020kfy FPZX003,2018KFYYXJJ030,2019kfy XKJC011)。
文摘Silica-based ceramic cores have been widely used to fabricate aero-engine hollow blades due to their moderate high temperature mechanical properties and excellent leachability.In this study,silica-based ceramics with SiC fiber addition were prepared via stereolithography,and the influence of SiC fiber content on mechanical properties of the obtained silica-based ceramics was investigated.With the increase of SiC fiber content,linear shrinkage gradually decreased,while room temperature flexural strength and high temperature flexural strength first increased and then decreased.As SiC fiber content increased to 4.0 wt%,linear shrinkage was reduced to 0.62%resulting from the oxidation of SiC.Furthermore,room temperature flexural strength was improved from 11.79 MPa to 23.83 MPa and high temperature flexural strength was enhanced from 15.64 MPa to 34.62 MPa with 4.0 wt%SiC fiber addition due to the reinforcement of fibers and the enhancedβ-cristobalite content,which meets the need of ceramic cores.Therefore,it demonstrates the capability of fabricating high-performance and high-precision silica-based ceramic cores reinforced by SiC fibers via stereolithography for rapid manufacturing of hollow blades.
基金This work was supported by the National Key Research and Development Program,China(No.2018YFB1106600)National Science and Technology Major Project,China(No.2017-VI-0002–0072 and No.Y2019-VII-0011-0151).
文摘The increasing demand for geometrically complex structures—specifically, higher-inlet-temperature turbine blades for the fifth-generation or other high-generation machines of advanced fighter aircrafts—hasmade the development of more complex double-walled three-layer hollow-cavity structures a necessity.However, this requires the preparation of complex ceramic cores and advanced, integrated technologies.Stereolithographic three-dimensional printing (SLA-3DP) technology, with digital control upon materialmorphology, composition, and structure, is a high integration and versatile technique that is superior tothe traditional manufacturing techniques for ceramic cores, including gel casting, injection molding, andhot pressing. The latent capacity of this technique is contingent on the progress of processing routesthat significantly reduce the distortion and defect formation in response to the elimination of the reactedorganic monomer phase during photo-curing. Despite the tremendous progress in the field, multiple challenges remain, such as the preparation of high-solid-content and low-viscosity suspensions, SLA-3DP oflarge double-walled ceramic cores with complex structures, and process optimization and sinter strengthening for the fabrication of ceramic cores. These challenges have prevented the broader applications andreduced the impact of the SLA-3DP technology. This review discusses cutting-edge research on the crucialfactors governing this production method. Specifically, we outline the existing challenges within the fieldand provide our perspective on the upcoming research work and progress.
基金financially supported by the National Natural Science Foundation of China(Nos.52130204,52174376,51822405)Guangdong Basic and Applied Basic Research Foundation(No.21201910250000848)+5 种基金Science and Technology Innovation Team Plan of Shaan Xi Province(No.2021TD-17)The Youth Innovation Team of Shaanxi UniversitiesJoint Research Funds of the Department of Science&Technology of Shaanxi Province and NPU(2020GXLH-Z-024)Key R&D Program of Shaan Xi Province(No.2019ZDLGY 04-04)Fundamental Research Funds for the Central Universities(No.D5000210902)Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Nos.CX2021056 and CX2021066),China。
文摘Ceramic cores with complex structures and optimized properties are critical for hollow turbine blades applied in aeroengines.Compared to traditional methods,additive manufacturing(AM)presents great advantages in forming complex ceramic cores,but how to balance the porosity and strength is an enormous challenge.In this work,alumina ceramic cores with high porosity,moderate strength,and low high-temperature deflection were prepared using stereolithography(SLA)3D printing by a novel powder gradation design strategy.The contradiction between porosity and flexural strength is well adjusted when the mass ratio of the coarse,medium,and fine particles is 2:1:1 and the sintering temperature is 1600℃.The fracture mode of coarse particles in sintered SLA 3D printing ceramic transforms from intergranular fracture to transgranular fracture with the increase of sintering temperature and the proportion of fine powders in powder system.The sintered porosity has a greater influence on the high-temperature deflection of SLA 3D printed ceramic cores than grain size.On this basis,a"non-skeleton"microstructure model of SLA 3D printed alumina ceramic cores is created to explain the relationship between the sintering process and properties.As a result,high porosity(36.4%),appropriate strength(50.1 MPa),and low high-temperature deflection(2.27 mm)were achieved by optimizing particle size gradation and sintering process,which provides an insight into the important enhancement of the comprehensive properties of SLA 3D printed ceramic cores.
基金supported by the National Science and Technology Major Project(2017-VII-0008-0102)the National Natural Science Foundation of China(51975230)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(SKL201903SIC).
文摘Silica ceramic cores have played an important part in the manufacture of hollow blades due to their excellent chemical stability and moderate high-temperature mechanical properties.In this study,silica-based ceramics were prepared with Al_(2)0_(3) addition by stereolithography,and the influence of Al_(2)0_(3) content on mechanical properties of the silica-based ceramics was investigated.The Al_(2)0_(3) in silica-based ceramics can improve the mechanical properties by playing a role as a seed for the crystallization of fused silica into cristobalite.As a result,with the increase of Al_(2)0_(3) content,the linear shrinkage of the silica-based ceramics first decreased and then increased,while the room-temperature flexural strength and the high-temperature flexural strength first increased and then decreased.As the Al_(2)0_(3) content increased to 1.0 vol%,the linear shrinkage was reduced to 1.64%because of the blocked viscous flow caused by Al_(2)0_(3).Meanwhile,the room-temperature flexural strength and the high-temperature flexural strength were improved to 20.38 and 21.43 MPa with 1.0 vol%Al_(2)0_(3),respectively,due to the increased a-cristobalite and P-cristobalite content.Therefore,using the optimal content of Al_(2)0_(3) in silica-based ceramics can provide excellent mechanical properties,which are suitable for the application of ceramic cores in the manufacturing of hollow blades.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51505457)the National Science and Technology Major Project(Grant No.2017-VII-0008-0101)+2 种基金the Key Research and Development Program of Shaanxi Province(Grant No.2018ZDXM-GY-059)the Open Fund of State Key Laboratory of Manufacturing Systems Engineering(Grant No.SKLMS2016013)the Fundamental Research Funds for the Central Universities,and the Youth Innovation Team of Shaanxi Universities.
文摘The precision casting method based on aluminabased ceramic cores is one of the main techniques used to manufacture hollow turbine blades.Additive manufacturing(AM)technology provides an alternate solution to fabricating ceramic cores quickly and precisely.As the complexity of the structure increases and the strength of the material improves,the leaching process of the cores becomes more complicated.This study proposes a compound pore-forming method to increase the porosity of ceramic cores by adding a preformed-pore agent and materials that convert to easy-to-corrode phases.The preformed-pore agents(e.g.,carbon fibers)can be burned off during sintering to form pores before the leaching,and the easy-to-corrode phases(e.g.,CaCO3,SiO2,^-A12O3)can be leached firstly to form pores during the leaching process.The pores formed in the aforementioned two stages increase the contact area of the cores and leaching solution,thus improving the leaching rate.In the current study,the additive amount of the preformed-pore agent was optimized,and the effect of the easy-to-corrode phases on the comprehensive properties of the cores was then compared.Based on this,the corresponding model was established.
基金This work was financially supported by the National Natural Science Foundation of China(No.U22A20129)National Science and Technology Major Project(No.2017-VI-0002-0072)+2 种基金National Key Research and Development Program of China(No.2018YFB1106600)Fundamental Research Funds for the Central Universities(WK5290000003)Students'Innovation and Entrepreneurship Foundation of USTC(Nos.CY2022G10 and CY2022C24).
文摘Ceramic cores are the key intermediate components of hollow blades for aero-engine.Conventional processes,such as hot-press molding and gel film casting,face difficulties in fabricating complex-structured ceramic cores due to the complexity of moulds and long process cycles.Stereolithography 3D printing provides a new idea for the fabrication of complex-structured ceramic cores.The effect of sintering temperature on open porosity,bulk density,weight loss rate,shrinkage rate,flexural strength and microstructure of the Al_(2)O_(3)-based ceramic core doped with 10vol.%polysilazane(PSZ)was studied.The sintering mechanism of PSZ-reinforced ceramic cores was analyzed.Results show that the optimum sintering temperature of PSZ-reinforced ceramic cores is 1,450°C.At this temperature,the open porosity of the ceramic core is 36.60%,bulk density is 2.33 g·cm^(-3),weight loss rate is 22.11%,shrinkage rate along the X,Y,Z directions is 5.72%,5.01%,9.61%,respectively;the flexural strength is 28.794 MPa at 25°C and 13.649 MPa at 1,500°C.Properties of 3D printing PSZ-reinforced ceramic cores can meet the casting requirement of superalloy hollow blades,which is expected to promote the industrial application of 3D printing complex structure ceramic cores.
基金financially supported by the Natural Science Foundation of China(No.U22A20129)the National Science and Technology Major Project(No.2017-VI-0002-0072)+2 种基金the National Key Research and Development Program of China(No.2018YFB1106600)the Fundamental Research Funds for the Central Universities(WK5290000003)the Students’Innovation and Entrepreneurship Foundation of USTC(Nos.CY2022G10 and CY2022C24).
文摘Vat photopolymerization 3D printing ceramic technology provides a feasible process for the preparation of complex internal cooling channels for aeroengine single crystal superalloy hollow blades.However,the typical layered structure characteristics of 3D printing ceramic technology led to the anisotropy of ceramic core strength and sintering shrinkage,which greatly affects the performance and accuracy of the complex structure core and requires further research and improvement.Herein,the influence of the thickness of the slurry layer on the flow characteristics of the slurry in the process of the vat photopolymerization 3D printing slurry spreading was systematically studied by the method of simulation and experiment.The simulation results show that the positions of the turbulent zone and maximum velocity zone in the scraper front affect the redistribution of powder particles with different sizes.The layered structure was caused by the redistribution of ceramic particles of different sizes in the slurry layer.By controlling the turbulent flow zone and the maximum velocity zone of the scraper leading edge,the phenomenon of laminar flow can be weakened and the particle redistribution can be improved.With the increase of the thickness of the printing layer,the layered structure appears gradually,and the pores at the interface of the layered structure gradually concentrated into the interfacial pore lines from the uniform distribution,and the crack propagation changes from intergranular micro-crack to interlayer macro-crack.The combination of finite element simulation and experiment,through the slurry flow characteristics to control the layered structure of reductive vat photopolymerization ceramic core 3D printing,the control of crack propagation mode,element distribution and pore evolution of the core was accomplished,which lays a foundation for the performance control of ceramic 3D printing technology.
文摘Research and development of cast superalloys and processing for turbine blades in BIAM during the last 35 years have been reviewed briefly in this paper.
基金supported by the National Natural Science Foundation of China(No.51475120)Major Program of National Natural Science Foundation of China(No.U1537201)
文摘A new technology for detecting a tiny residual core in the small inner cavity of complex castings is proposed. The residual core is identified by using image recognition technology. Tracer processing and image signal processing are combined to enhance the image contrast. The relationships between the concentration of tracer, the size of the residual core, the wall thickness of the castings and the contrast were obtained. Based on the experimental data, the minimum detectable amount of residual core under different conditions was obtained. The results show that the minimum detectable amount decreases from 4.398 mg to 0.438 mg for the 1.0 mm wall thickness casting when the concentration of tracer increases from 0% to 20%. The signal-to-noise ratio(SNR) of the detection results increases by 27.010 by means of average filtering and linear point operation. The subtraction of image and image background was performed, and then the boundary extraction was carried out to obtain a clear and reliable result. The experimental results show that the non-traced residual core cannot be detected for a blade with a thickness less than 5 mm. The residual core of 1 mm thickness can be barely identified by artificial recognition after tracer processing and image processing, while the residual core of 0.6 mm thickness can be detected clearly using image recognition technology.
基金financially supported by the Funding from the National Key R&D Program of China(No.2018YFB1106600)the Fundamental Research Funds for Central Universities(WK5290000002)。
文摘High porosity and high strength are usually mutually exclusive in the preparation of ceramic materials.However,high porosity and flexural strength are required for the preparation of complex ceramic cores for hollow turbine blades.In this study,Al_(2)O_(3)cores with high porosity and high flexural strength were successfully prepared using digital light processing(DLP)3 D printing technology.The influence of sintering temperature on the microstructure,pore evolution,and flexural strength of the cores were investigated.With an increase in the sintering temperature,the porosity of the ceramic cores first increased and then decreased,reaching a maximum value of 35%at 1400℃.The flexural strength increased with the increase in sintering temperature,but at 1400℃the incremental enhancement of flexural strength was greatest.Combined with the core service requirements and core performance,this study selected 1400℃(open porosity of 35.1%and flexural strength of 20.3 MPa)as the optimal sintering temperature for the DLP-3 D printed Al_(2)O_(3)core.
基金the National Natural Science Foundation of China(Grant No.52005311)the Scientific and the National Science and Technology Major Project(Grant No.J2019-VII-0013-0153)Research Project Supported by Shanxi Scholarship Council of China(Grant No.2023-003).
文摘The deviation in wall thickness caused by core shift during the investment casting process significantly impacts the strength and service life of hollow turbine blades.To address this issue,a core shift limitation method is developed in this study.Firstly,a shift model is established based on computational fluid dynamics and motion simulation to predict the movement of the ceramic core in investment casting process.Subsequently,utilizing this model,an optimization method for fixturing layout inside the refractory ceramic shell is devised for the ceramic core.The casting experiment demonstrates that by utilizing the optimized fixture layout,not only can core shift during the investment casting pouring process be effectively controlled,but also the maximum wall thickness error of the blade can be reduced by 42.02%.In addition,the core shift prediction is also validated,with a prediction error of less than 26.9%.
基金the financial support from the National Key R&D Program of China(Grant No.2017YFB0310400)the National Natural Science Foundation of China(Grant No.51672014)。
文摘Ceramic core is a critical component in the super-alloy turbine blade casting.In our previous work,a novel multi-phase MgAl_(2)O_(4)/MgO porous ceramic was prepared for this purpose.The most important property was that it crumbled completely after hydrothermal treatment in just pure water,due to the hydration of MgO.In this work,the hydration process of the MgO embedded in the inert matrix was investigated in detail.The collapse behaved as an interior destruction without any bulk expansion of the sample.The hydration percentage was the only factor related to the water-collapsibility.The morphology of hydration product indicated that the reaction advanced in particular direction.Based on the finite element analysis for the expansion effect on the porous structure,the interiorcollapsing mechanism was proposed.During the hydration process,the MgO grains exerted pressure to the surrounding matrix and induced the collapse in the adjacent structure.This process took place throughout the matrix.Finally,the sample crumbled completely to the powders.No bulk dilatation was detected before the powdering,indicating that the collapse process would not exert pressure outward.Thus the alloy blade would not be damaged during the removal of the ceramic core.It was also predicted that the decrease in the MgO grain size was beneficial to the water-collapsibility.