期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
MULTI-SCALE AND MULTI-PHASE NANOCOMPOSITE CERAMIC TOOLS AND CUTTING PERFORMANCE 被引量:3
1
作者 HUANG Chuanzhen LIU Hanlian +1 位作者 WANG Jun WANG Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期5-7,共3页
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f... An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched. 展开更多
关键词 Multi-scale and multi-phase ceramic tool material Mechanical properties cutting performance
下载PDF
Synergistically Toughening Effect of SiC Whiskers and Nanoparticles in Al_2O_3-based Composite Ceramic Cutting Tool Material 被引量:3
2
作者 LIU Xuefei LIU Hanlian +3 位作者 HUANG Chuanzhen WANG Limei ZOU Bin ZHAO Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期977-982,共6页
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ... In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool. 展开更多
关键词 Al2O3-based ceramic cutting tool materials SiC whiskers SiC nanoparticles mechanical properties toughening and strengthening mechanisms
下载PDF
NOTCH WEAR OF MACHINING NICKEL BASED ALLOYS WITH CERAMIC TOOLS
3
作者 He Ning Pan Liangxian Zhang Youzhen (Nanjing University of Aeronautics and Astronautics) 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 1995年第4期262-266,共17页
The performances of mixed ceramic and sialon ceramic tools in machining nickel based alloy are tested.The negative cutting edge inclination and small tool lead angle are recommended for reducing ceramic tool failure.... The performances of mixed ceramic and sialon ceramic tools in machining nickel based alloy are tested.The negative cutting edge inclination and small tool lead angle are recommended for reducing ceramic tool failure. So called“notching at depth of cut”is not actually at the depth of cutting line, but out of cutting area。 The real reason of notching is caused by shocking of “sawtooth”on sawtooth- shaped burr and fin- shaped edges of chip 展开更多
关键词 ceramic tool Nickel based alloy Notch wear Metal cutting
全文增补中
Rare earth ceramic cutting tool and its cutting behavior when machining hardened steel and cast iron
4
作者 许崇海 张永莲 +2 位作者 吴光永 王兴海 张会发 《Journal of Rare Earths》 SCIE EI CAS CSCD 2010年第S1期492-496,共5页
The addition of rare earth element yttrium played an important role in the improvement of both mechanical properties and wear resistance of Al2O3/(W,Ti)C ceramic cutting tool material.Mechanical properties especially ... The addition of rare earth element yttrium played an important role in the improvement of both mechanical properties and wear resistance of Al2O3/(W,Ti)C ceramic cutting tool material.Mechanical properties especially the fracture toughness and flexural strength were obviously increased when a suitable amount of the yttrium were added.Wear resistance of the developed rare earth ceramic cutting tool material was higher than that of the corresponding materials without rare earth in the machining of the hardened 45# carbon steel and cast iron HT20-40.Wear modes of the Al2O3/(W,Ti)C rare earth ceramic tool materials were mainly flank wear and crater wear accompanied with slight notch wear when machining the hardened carbon steel.Wear mechanisms were major abrasive wear at low cutting speed and adhesive wear at high cutting speed.Wear modes were nearly the same except that the adhesion phenomenon in the crater area was intensified when machining cast iron.The flank wear area was relatively smooth with no obvious plowing phenomenon which was possibly concerned with the workpiece of low hardness and the adhesion phenomenon at high cutting temperature. 展开更多
关键词 ceramic cutting tool rare earths mechanical property cutting behavior
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部