Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ...Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.展开更多
The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sa...The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity.展开更多
A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sint...A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.展开更多
Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufac...Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.展开更多
The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturin...The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.展开更多
Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios...Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios,from 100%steel slag to 100%coal gangue at 10%intervals,microstructure and possible phase evolution of the coal gangue-steel slag ceramics were investigated using X-ray powder diffraction,scanning electron microscopy,mercury intrusion porosimetry and Archimedes boiling method.The experimental results suggest that the phase compositions of the as-prepared ceramics could be altered with the increased amount of coal gangue in the ceramics.The anorthite-diopside eutectic can be formed in the ceramics with the mass ratios of steel slag to coal gangue arranged from 8:2 to 2:8,which was responsible for the melting of the steel slag-coal gangue ceramics at relatively high temperature.Further investigations on the microstructure suggested that the addition of the proper amount of steel slag in ceramic compositions was conducive to the pore formation and further contributed to an increment in porosity.展开更多
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7...Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.展开更多
Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric cera...Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric ceramics are obtained,respectively.By studying the ferroelectric and photoelectric properties in conjunction with in situ Raman spectroscopy,it is found that the photostrictive effect of 67BF-33BT is not caused by the electrical strain induced by abnormal photovoltaic voltage,but related to the optical induced oxygen octahedral distortion.The 67BF-33BT lead-free ferroelectric material with excellent photostrictive response in the visible light region is expected to play an important role in the field of optical drive electromechanical devices.展开更多
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide...Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application.展开更多
Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,...Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat.展开更多
The ballistic resistance and failure pattern of a bi-layer alumina 99.5%-aluminium alloy 1100-H12 target against steel 4340 ogival nosed projectile has been explored in the present experimental cum numerical study.In ...The ballistic resistance and failure pattern of a bi-layer alumina 99.5%-aluminium alloy 1100-H12 target against steel 4340 ogival nosed projectile has been explored in the present experimental cum numerical study.In the experimental investigation,damage induced in the ceramic layer has been quantified in terms of number of cracks developed and failure zone dimensions.The resultant damage in the backing layer has been studied with variation in the bulge and perforation hole in the backing layer with the varying incidence velocity.The discussion of the experimental results has been further followed by three dimensional finite element computations using ABAQUS/Explicit finite code to investigate the behaviour of different types of bi-layer targets under multi-hit projectile impact.The JH-2 constitutive model has been used to reproduce the behaviour of alumina 99.5%and JC constitutive model has been used for steel 4340 and aluminium alloy 1100-H12.The total energy dissipation has been noted to be of lesser magnitude in case of sub-sequential impact in comparison to simultaneous impact of two projectiles.The distance between the impact points of two projectiles also effected the ballistic resistance of bi-layer target.The ballistic resistance of single tile ceramic front layer and four tile ceramic of equivalent area found to be dependent upon the boundary conditions provided to the target.展开更多
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to...ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.展开更多
A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this stud...A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.展开更多
PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula...PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated.展开更多
A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward contr...A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.展开更多
To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemi...To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications.展开更多
Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different conce...Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.展开更多
Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SE...Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SEM. In addition, TGA/DSC were performed to control decomposition/mass loss and show phase transitions respectively of CMs. Geochemical analysis by XRF reveals the following minerals composition: SiO<sub>2</sub> (~57% - 66%), Al<sub>2</sub>O<sub>3 </sub>(~13% - 15%), Fe<sub>2</sub>O<sub>3</sub> (~6% - 10%), TiO<sub>2</sub> (~1% - 2%) were the predominant oxides with a reduced proportion in C1, and (~7%) of fluxing agents (K<sub>2</sub>O, CaO, Na<sub>2</sub>O). Negligible and trace of MgO (~1%) and P<sub>2</sub>O<sub>5</sub> was noted. The mineralogical composition by XRD shows that, C1, C2 and C3 display close mineralogy with: Quartz (~50%), feldspar (~20%) as non-clay minerals, whereas clays minerals were mostly kaolinite (~15%), illite (~5%) and smectite (~10%). FTIR analysis exhibits almost seemingly similar absorption bands characteristic of hydroxyls elongation, OH valence vibration of Kaolinite and stretching vibration of some Metal-Oxygen bond. SEM micrographs of the samples exhibit microstructureformed by inter-aggregates particles with porous cavities. TGA/DSCconfirm the existence of quartz (570˚C to 870˚C), carbonates (600˚C - 760˚C), kaolinite (569˚C - 988˚C), illite (566˚C - 966˚C), MgO (410˚C - 720˚C) and smectite (650˚C - 900˚C). The overall characterization indicates that, these clayey soils exhibit good properties for ceramic application.展开更多
Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited r...Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals.展开更多
Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widesp...Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene.展开更多
文摘Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics.
基金supported by the National Key R&D Program of China (Grant No.2022YFA1402903)the National Natural Science Foundation of China (Grant Nos.52172116 and 62171214)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘The 0.98(K_(0.5)Na_(0.5))NbO_(3)-0.02Ba(Nb_(0.5)Co_(0.5))O_(3-δ) ceramics with doped Ba^(2+) and Co^(2+) ions are fabricated,and the impacts of the thermal process are studied.Compared with the rapidly cooled (RC) sample,the slowly cooled (SC) sample possesses superior dielectric and ferroelectric properties,and an 11 K higher ferroelectricparaelectric phase transition temperature,which can be attributed to the structural characteristics such as the grain size and the degree of anisotropy.Heat treatment can reversibly modulate the content of the oxygen vacancies,and in turn the ferroelectric hysteresis loops of the samples.Finally,robust and tunable ferroelectric property is achieved in SC samples with good structural integrity.
基金Funded by the National Natural Science Foundation of China(No.52272072)the Independent Innovation Projects of the Hubei Longzhong Laboratory(No.2022ZZ-13)。
文摘A series of spinel-type Mg_(0.25-x)Al_(2.57)O_(3.79)N_(0.21):xMn^(2+)(MgAlON:xMn^(2+))phosphors were synthesized by the solid-state reaction route.The transparent ceramic phosphors were fabricated by pressureless sintering followed by hot-isostatic pressing(HIP).The crystal structure,luminescence and mechanical properties of the samples were systematically investigated.The transparent ceramic phosphors with tetrahedrally coordinated Mn^(2+)show strong green emission centered around 515 nm under blue light excitation.As the Mn^(2+)concentration increases,the crystal lattice expands slightly,resulting in a variation of crystal field and a slight red-shift of green emission peak.Six weak absorption peaks in the transmittance spectra originate from the spin-forbidden ^(4)T_(1)(^(4)G)→^(6)A_(1) transition of Mn^(2+).The decay time was found to decrease from 5.66 to 5.16 ms with the Mn^(2+)concentration.The present study contributes to the systematic understanding of crystal structure and properties of MgAlON:xMn^(2+)green-emitting transparent ceramic phosphor which has a potential application in high-power light-emitting diodes.
基金financially supported by the National Natural Science Foundation of China(Grant Nos:52305502,U23B6005,52293405)China Postdoctoral Science Foundation(Grant No:2023M732788)the Postdoctoral Research Project of Shaanxi Province.
文摘Ceramic oxides,renowned for their exceptional combination of mechanical,thermal,and chemical properties,are indispensable in numerous crucial applications across diverse engineering fields.However,conventional manufacturing methods frequently grapple with limitations,such as challenges in shaping intricate geometries,extended processing durations,elevated porosity,and substantial shrinkage deformations.Direct additive manufacturing(dAM)technology stands out as a state-of-the-art solution for ceramic oxides production.It facilitates the one-step fabrication of high-performance,intricately designed components characterized by dense structures.Importantly,dAM eliminates the necessity for post-heat treatments,streamlining the manufacturing process and enhancing overall efficiency.This study undertakes a comprehensive review of recent developments in dAM for ceramic oxides,with a specific emphasis on the laser powder bed fusion and laser directed energy deposition techniques.A thorough investigation is conducted into the shaping quality,microstructure,and properties of diverse ceramic oxides produced through dAM.Critical examination is given to key aspects including feedstock preparation,laser-material coupling,formation and control of defects,in-situ monitoring and simulation.This paper concludes by outlining future trends and potential breakthrough directions,taking into account current gaps in this rapidly evolving field.
基金the sponsorship of the following fund projects:the Guangdong Basic and Applied Basic Research Foundation,China(No.2023A1515110578)the Guangzhou Basic and Applied Basic Research Project,China(No.2024A04J00725)the Guangdong Academy of Sciences Project of Science and Technology Development,China(Nos.2022GDASZH-2022010107 and 2022GDASZH-2022010108).Dr.Zhao would particularly like to thank his wife,M.S.Guo,for her help with the language of the manuscript and for the encouragement of their newborn baby.
文摘The urgent need for integrated molding and sintering across various industries has inspired the development of additive manu-facturing(AM)ceramics.Among the different AM technologies,direct laser additive manufacturing(DLAM)stands out as a group of highly promising technology for flexibly manufacturing ceramics without molds and adhesives in a single step.Over the last decade,sig-nificant and encouraging progress has been accomplished in DLAM of high-performance ceramics,including Al_(2)O_(3),ZrO_(2),Al_(2)O_(3)/ZrO_(2),SiC,and others.However,high-performance ceramics fabricated by DLAM face challenges such as formation of pores and cracks and resultant low mechanical properties,hindering their practical application in high-end equipment.Further improvements are necessary be-fore they can be widely adopted.Methods such as field-assisted techniques and post-processing can be employed to address these chal-lenges,but a more systematic review is needed.This work aims to critically review the advancements in direct selective laser sintering/melting(SLS/SLM)and laser directed energy deposition(LDED)for various ceramic material systems.Additionally,it provides an overview of the current challenges,future research opportunities,and potential applications associated with DLAM of high-perform-ance ceramics.
基金Funded by the Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province(No.BE2022028-4)。
文摘Industrial wastes such as steel slag and coal gangue etc.were chosen as raw materials for preparing ceramic via the conventional solid-state reaction method.With steel slag and coal gangue mixed in various mass ratios,from 100%steel slag to 100%coal gangue at 10%intervals,microstructure and possible phase evolution of the coal gangue-steel slag ceramics were investigated using X-ray powder diffraction,scanning electron microscopy,mercury intrusion porosimetry and Archimedes boiling method.The experimental results suggest that the phase compositions of the as-prepared ceramics could be altered with the increased amount of coal gangue in the ceramics.The anorthite-diopside eutectic can be formed in the ceramics with the mass ratios of steel slag to coal gangue arranged from 8:2 to 2:8,which was responsible for the melting of the steel slag-coal gangue ceramics at relatively high temperature.Further investigations on the microstructure suggested that the addition of the proper amount of steel slag in ceramic compositions was conducive to the pore formation and further contributed to an increment in porosity.
基金supported by the Research Grants Council,University Grants Committee,Hong Kong SAR(Project Number:N_PolyU552/20)supported by the National Nature Science Foundation of China(22209138)Guangdong Basic and Applied Basic Research Foundation(2021A1515110464).
文摘Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage.
基金Funded by the National Key Research and Development Program of China(No.2023YFB3812200)the National Key Basic Research Program of China(973 Program)(No.2015CB654601)。
文摘Under illumination by 405,520 and 655 nm monochromatic visible light(light intensity of 30 kW/m^(2)),large photostriction(ΔL/L)of 0.19%,0.13%and 0.26%for 67BiFeO_(3)-33BaTiO_(3)(67BF-33BT)lead-free ferroelectric ceramics are obtained,respectively.By studying the ferroelectric and photoelectric properties in conjunction with in situ Raman spectroscopy,it is found that the photostrictive effect of 67BF-33BT is not caused by the electrical strain induced by abnormal photovoltaic voltage,but related to the optical induced oxygen octahedral distortion.The 67BF-33BT lead-free ferroelectric material with excellent photostrictive response in the visible light region is expected to play an important role in the field of optical drive electromechanical devices.
基金supported by the National Natural Science Foundation of China(Grant Nos.92060203,52105453,and 92360304)the Science Center for Gas Turbine Project(No.P2022-A-IV-002-001).
文摘Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application.
基金supported by JSPS Kakenhi program(program number 16H06364)and JST CRESTThe authors extend their appreciation to the Deputyship for Research and Innovation,“Ministry of Education”in Saudi Arabia for funding this research(IFKSUOR3-615-5)O.M.also thank the support of Tomsk State University Development Programme(priority-2030)for this work.
文摘Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat.
文摘The ballistic resistance and failure pattern of a bi-layer alumina 99.5%-aluminium alloy 1100-H12 target against steel 4340 ogival nosed projectile has been explored in the present experimental cum numerical study.In the experimental investigation,damage induced in the ceramic layer has been quantified in terms of number of cracks developed and failure zone dimensions.The resultant damage in the backing layer has been studied with variation in the bulge and perforation hole in the backing layer with the varying incidence velocity.The discussion of the experimental results has been further followed by three dimensional finite element computations using ABAQUS/Explicit finite code to investigate the behaviour of different types of bi-layer targets under multi-hit projectile impact.The JH-2 constitutive model has been used to reproduce the behaviour of alumina 99.5%and JC constitutive model has been used for steel 4340 and aluminium alloy 1100-H12.The total energy dissipation has been noted to be of lesser magnitude in case of sub-sequential impact in comparison to simultaneous impact of two projectiles.The distance between the impact points of two projectiles also effected the ballistic resistance of bi-layer target.The ballistic resistance of single tile ceramic front layer and four tile ceramic of equivalent area found to be dependent upon the boundary conditions provided to the target.
基金National Key R&D Program of China(2022YFB3707700)Shanghai Science and Technology Innovation Action Plan(21511104800)+3 种基金National Natural Science Foundation of China(52172111)National Science and Technology Major Project(2017-IV-0005-0042)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)Science Center for Gas Turbine Project(P2022-B-IV-001-001)。
文摘ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.
基金This study is supported by the National Key Research and Development Program of China(No.2022YFB2807405)the Qinchuangyuan Citing High-level Innovation and Entrepreneurship Talent Projects(No.QCYRCXM-2022-40)+2 种基金the National Natural Science Foundation of China(Nos.U2341263 and 62371366)Open project of Yunnan Precious Metals Laboratory Co.,Ltd(No.YPML-2023050246)Innovation Capability Support Program of Shaanxi,China(Nos.2023-CX-PT-30 and 2022TD-28).
文摘A glass frit containing Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)component was used to explore the low-temperature sintering behaviors and microwave dielectric characteristics of tri-rutile MgTa_(2)O_(6)ceramics in this study.The good low-firing effects are presented due to the high matching relevance between Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass and MgTa_(2)O_(6)ceramics.The pure tri-rutile MgTa_(2)O_(6)structure remains unchanged,and high sintering compactness can also be achieved at 1150℃.We found that the Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass not only greatly improves the low-temperature sintering characteristics of MgTa_(2)O_(6)ceramics but also maintains a high(quality factor(Q)×resonance frequency(f))value while still improving the temperature stability.Typically,great microwave dielectric characteristics when added with 2wt%Li_(2)O-MgO-ZnO-B_(2)O_(3)-SiO_(2)glass can be achieved at 1150℃:dielectric constant,ε_(r)=26.1;Q×f=34267 GHz;temperature coefficient of resonance frequency,τ_(f)=-8.7×10^(-6)/℃.
基金supported by the National Research Foundation (NRF) grant funded by the Korea government (NRF2022R1C1C1007619, NRF-2021M3H4A1A01002921, NRF2021M3I3A1084292)supported by the KIST Institutional Program (Project No. 2E32592-23-069)。
文摘PrBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(PrBSCF) has attracted much research interest as a potential triple ionic and electronic conductor(TIEC) electrode for protonic ceramic fuel cells(PCFCs). The chemical formula for Pr BSCF is AA'B_(2)O_(5+δ), with Pr(A-site) and Ba/Sr(A'-site) alternately stacked along the c-axis. Due to these structural features, the bulk oxygen ion diffusivity is significantly enhanced through the disorder-free channels in the PrO layer;thus, the A site cations(lanthanide ions) play a pivotal role in determining the overall electrochemical properties of layered perovskites. Consequently, previous research has predominantly focused on the electrical properties and oxygen bulk/surface kinetics of Ln cation effects,whereas the hydration properties for PCFC systems remain unidentified. Here, we thoroughly examined the proton uptake behavior and thermodynamic parameters for the hydration reaction to conclusively determine the changes in the electrochemical performances depending on LnBa_(0.5)Sr_(0.5)Co_(1.5)Fe_(0.5)O_(5+δ)(LnBSCF,Ln=Pr, Nd, and Gd) cathodes. At 500 ℃, the quantitative proton concentration of PrBSCF was 2.04 mol% and progressively decreased as the Ln cation size decreased. Similarly, the Gibbs free energy indicated that less energy was required for the formation of protonic defects in the order of Pr BSCF < Nd BSCF < Gd BSCF. To elucidate the close relationship between hydration properties and electrochemical performances in LnBSCF cathodes, PCFC single cell measurements and analysis of the distribution of relaxation time were further investigated.
基金National Natural Science Foundation of China(Nos.62171285,61971120 and 62327807)。
文摘A hybrid compensation scheme for piezoelectric ceramic actuators(PEAs)is proposed.In the hybrid compensation scheme,the input rate-dependent hysteresis characteristics of the PEAs are compensated.The feedforward controller is a novel input rate-dependent neural network hysteresis inverse model,while the feedback controller is a proportion integration differentiation(PID)controller.In the proposed inverse model,an input ratedependent auxiliary inverse operator(RAIO)and output of the hysteresis construct the expanded input space(EIS)of the inverse model which transforms the hysteresis inverse with multi-valued mapping into single-valued mapping,and the wiping-out,rate-dependent and continuous properties of the RAIO are analyzed in theories.Based on the EIS method,a hysteresis neural network inverse model,namely the dynamic back propagation neural network(DBPNN)model,is established.Moreover,a hybrid compensation scheme for the PEAs is designed to compensate for the hysteresis.Finally,the proposed method,the conventional PID controller and the hybrid controller with the modified input rate-dependent Prandtl-Ishlinskii(MRPI)model are all applied in the experimental platform.Experimental results show that the proposed method has obvious superiorities in the performance of the system.
基金supported by the Natural Science Foundation of Henan Province,China(Grant Nos.232300420353 and 232300420392)the Key Scientific Research Project of Higher Education of Henan Province(Grant No.24B140001)+2 种基金the Doctor Scientific Research Initiate Fund of Anyang Institute of Technology(Grant No.BSJ2022010)the National Basic Research Program of China(Grant No.2009CB939901)the Henan Provincial Science and Technology Research Project(Grant No.232102241016).
文摘To insight into the B-site ordering in RFe_(0.5)Cr_(0.5)O_(3)ceramics,a series of RFe_(0.5)Cr_(0.5)O_(3)ceramics(R=La,Y,Lu)were synthesized by the sol-gel method,and the structural and magnetic properties were systemically investigated.By using the Rietveld refinement of all samples,it is found that the structural distortion is increased as the R ionic radius decreases,leading to the weakened interactions between Fe/Cr ions.Moreover,the Fe and Cr are arranged in disorder in LaFe_(0.5)Cr_(0.5)O_(3),but partially ordered in YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3),showing an increasing trend of the proportion of ordered domains with the decrease of R ionic radius.Through fitting the temperature-dependent magnetizations,it is identified that the magnetization reversal(MR)in disorder LaFe_(0.5)Cr_(0.5)O_(3)is resulted from the competition between the moments of Cr and Fe sublattices.In the partially ordered YFe_(0.5)Cr_(0.5)O_(3)and LuFe_(0.5)Cr_(0.5)O_(3)ceramics,because of the presence of Fe-O-Cr networks in the ordered domains whose moment is antiparallel to that of Fe-O-Fe and Cr-O-Cr in the disordered domains,the compensation temperature T_(comp)of MR is increased by nearly 50 K.These results suggest that the changing of R-site ions could be used very effectively to modify the Fe-O-Cr ordering,apart from the structural distortion,which has a direct effect on the magnetic exchange interactions in RFe_(0.5)Cr_(0.5)O_(3)ceramics.Then at values of composition where ordered domains are expected to be larger in number as compared to disordered domains and with a weaker structural distortion,one can expect a higher transition temperature Tcomp,providing a different view for adjustment of the magnetic properties of RFe_(0.5)Cr_(0.5)O_(3)ceramics for practical applications.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.52272116 and 12002400)the Natural Science Foundation of Shandong Province (Grant No.ZR2021ME096)the Youth Innovation Team Project of Shandong Provincial Education Department (Grant No.2019KJJ012)。
文摘Pb(Mg_(1/3)Nb_(2/3))O_(3)–PbTiO_(3)(PMN-PT)piezoelectric ceramics have excellent piezoelectric properties and are used in a wide range of applications.Adjusting the solid solution ratios of PMN/PT and different concentrations of elemental doping are the main methods to modulate their piezoelectric coefficients.The combination of these controllable conditions leads to an exponential increase of possible compositions in ceramics,which makes it not easy to extend the sample data by additional experimental or theoretical calculations.In this paper,a physics-embedded machine learning method is proposed to overcome the difficulties in obtaining piezoelectric coefficients and Curie temperatures of Sm-doped PMN-PT ceramics with different components.In contrast to all-data-driven model,physics-embedded machine learning is able to learn nonlinear variation rules based on small datasets through potential correlation between ferroelectric properties.Based on the model outputs,the positions of morphotropic phase boundary(MPB)with different Sm doping amounts are explored.We also find the components with the best piezoelectric property and comprehensive performance.Moreover,we set up a database according to the obtained results,through which we can quickly find the optimal components of Sm-doped PMN-PT ceramics according to our specific needs.
文摘Herein, we report some characteristics of the clayey materials (CMs) collected from Kaliwa (C1), Kabé (C2) and Malo (C3) district in N’Djamena (Chad). Three samples were characterized applying XRF, XRD, FTIR, SEM. In addition, TGA/DSC were performed to control decomposition/mass loss and show phase transitions respectively of CMs. Geochemical analysis by XRF reveals the following minerals composition: SiO<sub>2</sub> (~57% - 66%), Al<sub>2</sub>O<sub>3 </sub>(~13% - 15%), Fe<sub>2</sub>O<sub>3</sub> (~6% - 10%), TiO<sub>2</sub> (~1% - 2%) were the predominant oxides with a reduced proportion in C1, and (~7%) of fluxing agents (K<sub>2</sub>O, CaO, Na<sub>2</sub>O). Negligible and trace of MgO (~1%) and P<sub>2</sub>O<sub>5</sub> was noted. The mineralogical composition by XRD shows that, C1, C2 and C3 display close mineralogy with: Quartz (~50%), feldspar (~20%) as non-clay minerals, whereas clays minerals were mostly kaolinite (~15%), illite (~5%) and smectite (~10%). FTIR analysis exhibits almost seemingly similar absorption bands characteristic of hydroxyls elongation, OH valence vibration of Kaolinite and stretching vibration of some Metal-Oxygen bond. SEM micrographs of the samples exhibit microstructureformed by inter-aggregates particles with porous cavities. TGA/DSCconfirm the existence of quartz (570˚C to 870˚C), carbonates (600˚C - 760˚C), kaolinite (569˚C - 988˚C), illite (566˚C - 966˚C), MgO (410˚C - 720˚C) and smectite (650˚C - 900˚C). The overall characterization indicates that, these clayey soils exhibit good properties for ceramic application.
文摘Zirconia ceramics have become increasingly widely used in recent years and are favored by relevant enterprises. From the traditional dental field to aerospace, parts manufacturing has been used, but there is limited research on the deformation and damage process of zirconia ceramics. This article analyzes the acoustic emission characteristics of each stage of ceramic damage from the perspective of acoustic emission, and explores its deformation process characteristics from multiple perspectives such as time domain, frequency, and EWT modal analysis. It is concluded that zirconia ceramics exhibit higher brittleness and acoustic emission strength than alumina ceramics, and when approaching the fracture, it tends to generate lower frequency acoustic emission signals.
文摘Graphene has excellent mechanical properties and unique physical/chemical properties,which make it have a good strengthening and toughening effect on structural ceramic materials.In recent years,it has received widespread attention and research.This article reviews the mixing and sintering processes in the preparation of graphene/ceramic com-posites,as well as the toughening mechanism of graphene on ceramic materials.It also looks forward to how to further enhance the toughening effect of graphene.