期刊文献+
共找到10,859篇文章
< 1 2 250 >
每页显示 20 50 100
High-performance grinding of ceramic matrix composites
1
作者 Jingfei Yin Jiuhua Xu Honghua Su 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2024年第3期45-55,共11页
Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wide... Ceramic matrix composites(CMCs)are highly promising materials for the next generation of aero-engines.However,machining of CMCs suffers from low efficiency and poor surfacefinish,which presents an obstacle to their wider application.To overcome these problems,this study investigates high-efficiency deep grinding of CMCs,focusing on the effects of grinding depth.The results show that both the sur-face roughness and the depth of subsurface damage(SSD)are insensitive to grinding depth.The material removal rate can be increased sixfold by increasing the grinding depth,while the surface roughness and SSD depth increase by only about 10%.Moreover,it is found that the behavior of material removal is strongly dependent on grinding depth.As the grinding depth is increased,fibers are removed in smaller sizes,with thefiber length in chips being reduced by about 34%.However,too large a grinding depth will result in blockage by chip powder,which leads to a dramatic increase in the ratio of tangential to normal grinding forces.This study demonstrates that increasing the depth of cut is an effective approach to improve the machining efficiency of CMCs,while maintaining a good surfacefin-ish.It provides the basis for the further development of high-performance grinding methods for CMCs,which should facilitate their wider application. 展开更多
关键词 ceramic matrix composite GRINDING Surfacefinish Subsurface damage Fiber breakage
下载PDF
Penetration resistance of Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor:Experimental and numerical investigations
2
作者 Wencheng Lu Yiding Wu +3 位作者 Minghui Ma Yilei Yu Xuan Zhou Guangfa Gao 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2024年第5期346-359,共14页
To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different t... To enhance the protective performance of ceramic composite armor,ballistic penetration experiments were conducted on Al_(2)O_(3) ceramic-ultra-high molecular weight polyethylene(UHMWPE)composite armor with different thickness configurations.The damage and failure modes of hard projectiles and ceramic-fiber composite targets were analyzed.The recovered projectiles and ceramic fragments were sieved and weighed at multiple stages,revealing a positive correlation between the degree of fragmentation of the projectiles and ceramics and the overall ballistic resistance of the composite targets.Numerical simulations were performed using the LS-DYNA finite element software,and the simulation results showed high consistency with the experimental results,confirming the validity of the material parameters.The results indicate that the projectile heads primarily exhibited crushing and abrasive fragmentation.Larger projectile fragments mainly resulted from tensile and shear stress-induced failure.The failure modes of the composite targets included the formation of ceramic cones and radial cracks under high-velocity impacts.The UHMWPE laminated plates exhibited interlayer separation caused by tensile waves,permanent plastic deformation of the rear surface bulging,and perforation failure primarily due to shear forces.Through extended numerical simulations,while maintaining the same areal density and configuration of9 mm Al_(2)O_(3) ceramic+12 mm UHMWPE laminated composite armor,the thickness configurations of the Al_(2)O_(3) ceramic and UHMWPE laminated backplates were varied,and various thicknesses of UHMWPE laminates were simulated as the cover layer for the ceramic panels.The simulation results indicated that the composite armor configuration of 10 mm Al_(2)O_(3) ceramic+8 mm UHMWPE composite armor increased energy absorption by13.48%.When altering the cover layer thickness,a 4 mm UHMWPE+9 mm Al_(2)O_(3)+8 mm UHMWPE composite armor demonstrated a 27.11%improvement in energy absorption,showing a relatively significant enhancement. 展开更多
关键词 composite armor Al_(2)O_(3) ceramic UHMWPE laminates Damage and failure modes Ballistic performance Numerical simulation
下载PDF
Lithiated Nafion-garnet ceramic composite electrolyte membrane for solid-state lithium metal battery 被引量:4
3
作者 Jing Gao Qinjun Shao Jian Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期237-247,I0008,共12页
Single-ion conducting solid polymer electrolytes are expected to play a vital role in the realization of solid-state Li metal batteries.In this work,a lithiated Nafion(Li-Nafion)-garnet ceramic Li6.25La3 Zr2 Al0.25O12... Single-ion conducting solid polymer electrolytes are expected to play a vital role in the realization of solid-state Li metal batteries.In this work,a lithiated Nafion(Li-Nafion)-garnet ceramic Li6.25La3 Zr2 Al0.25O12(LLZAO)composite solid electrolyte(CSE)membrane with 30μm thickness was prepared for the first time.By employing X-ray photoelectron spectroscopy and transmission electron microscope,the interaction between LLZAO and Li-Nafion was investigated.It is found that the LLZAO interacts with the Li-Nafion to form a space charge layer at the interface between LLZAO and Li-Nafion.The space charge layer reduces the migration barrier of Li-ions and improves the ionic conductivity of the CSE membrane.The CSE membrane containing 10 wt%LLZAO exhibits the highest ionic conductivity of2.26×10-4 S cm-1 at 30℃among the pristine Li-Nafion membrane,the membrane containing 5 wt%,20 wt%,and 30 wt%LLZAO,respectively.It also exhibits a high Li-ion transference number of 0.92,and a broader electrochemical window of 0-+4.8 V vs.Li+/Li than that of 0-+4.0 V vs.Li+/Li for the pristine Li-Nafion membrane.It is observed that the CSE membrane not only inhibits the growth of Li dendrites but also keeps excellent electrochemical stability with the Li electrode.Benefitting from the above merits,the solid-state LiFePO4/Li cell fabricated with the CSE membrane was practically charged and discharged at 30℃.The cell exhibits an initial reversible discharge specific capacity of 160 mAh g-1 with 97%capacity retention after 100 cycles at 0.2 C,and maintains discharge specific capacity of 126 mAh g-1 after500 cycles at 1 C.The CSE membrane prepared with Li-Nafion and LLZAO is proved to be a promising solid electrolyte for advanced solid-state Li metal batteries. 展开更多
关键词 Single-ion conductor composite solid electrolyte Lithiated Nafion Garnet ceramic Solid-state Li metal battery
下载PDF
Vacuum brazing of Si/SiC ceramic composite and Invar alloy using TiSOCu-W filler metals 被引量:2
4
作者 张华 黄继华 +2 位作者 张志远 赵兴科 陈树海 《China Welding》 EI CAS 2012年第1期76-80,共5页
Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed ... Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature. 展开更多
关键词 Si/SiC ceramic composite lnvar alloy BRAZING Ti50Cu-W filler metals
下载PDF
Rational Design of High-Performance PEO/Ceramic Composite Solid Electrolytes for Lithium Metal Batteries 被引量:9
5
作者 Yanxia Su Fei Xu +2 位作者 Xinren Zhang Yuqian Qiu Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期155-189,共35页
Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible pro... Composite solid electrolytes(CSEs)with poly(ethylene oxide)(PEO)have become fairly prevalent for fabricating high-performance solid-state lithium metal batteries due to their high Li~+solvating capability,flexible processability and low cost.However,unsatisfactory room-temperature ionic conductivity,weak interfacial compatibility and uncontrollable Li dendrite growth seriously hinder their progress.Enormous efforts have been devoted to combining PEO with ceramics either as fillers or major matrix with the rational design of two-phase architecture,spatial distribution and content,which is anticipated to hold the key to increasing ionic conductivity and resolving interfacial compatibility within CSEs and between CSEs/electrodes.Unfortunately,a comprehensive review exclusively discussing the design,preparation and application of PEO/ceramic-based CSEs is largely lacking,in spite of tremendous reviews dealing with a broad spectrum of polymers and ceramics.Consequently,this review targets recent advances in PEO/ceramicbased CSEs,starting with a brief introduction,followed by their ionic conduction mechanism,preparation methods,and then an emphasis on resolving ionic conductivity and interfacial compatibility.Afterward,their applications in solid-state lithium metal batteries with transition metal oxides and sulfur cathodes are summarized.Finally,a summary and outlook on existing challenges and future research directions are proposed. 展开更多
关键词 composite solid electrolytes Ionic conductivity Interfacial compatibility Ion conduction pathways Li metal batteries
下载PDF
Ceramic-Metal Composite Coating by Laser Cladding 被引量:2
6
作者 Wang Pengzhu Qu Jinxing Shao Hesheng 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 1996年第2期28-34,共7页
Four kinds of ceramics (silicon carbide, boron carbide, aluminum oxide and tungsten carbide) were added into Ni base self-fluxing alloy as reinforcing materials in order to obtain metalceramic composite coating by mea... Four kinds of ceramics (silicon carbide, boron carbide, aluminum oxide and tungsten carbide) were added into Ni base self-fluxing alloy as reinforcing materials in order to obtain metalceramic composite coating by means of laser cladding. A lot of experiments have been carried out to test the processability of the four kinds of ceramics with different sizes and contents. The microstructures of sintered tungsten carbide (S-WC) and cast tungsten carbide (C-WC) reinforced Ni base alloy coatings were analysed, the distortion regulation of laser clad specimens was revealed. The wear resistance of the composite coating has been tested. 展开更多
关键词 composite coating ceramic reinforcement laser cladding
下载PDF
Fabrication of Ceramic Composites by Directed Metal Oxidation 被引量:1
7
作者 周曦亚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第1期48-50,共3页
To explain the growth mechanism of Al 2O 3/Al Lanxide composites,the dynamics of the directed oxidation of Al-Mg-Si alloys are analyzed.The experimental methods to produce Lanxide composites by directed oxidation of... To explain the growth mechanism of Al 2O 3/Al Lanxide composites,the dynamics of the directed oxidation of Al-Mg-Si alloys are analyzed.The experimental methods to produce Lanxide composites by directed oxidation of metal melts at high temperatures are presented.The effect of the processing factors on the microstructures and properties of Al 2O 3/Al composites and enforced Al 2O 3/Al composites is also analyzed.Compared with sintering ceramic composites,the advantages of Lanxide process and Lanxide materials are as following:it is a near net shaped process;the process is very simple;the microstructures and properties of Lanxide materials can be adjusted;and this process can be used to infiltrate ceramic fiber or particle preforms. 展开更多
关键词 compositeS ceramic directed oxidation Al 2O 3/Al ALLOY
下载PDF
Effects of metal binder on the microstructure and mechanical properties of Al2O3-based micro-nanocomposite ceramic tool material 被引量:1
8
作者 Xiu-ying Ni Jun Zhao +2 位作者 Jia-lin Sun Feng Gong Zuo-li Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第7期826-832,共7页
The Al_2O_3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction(XRD) and scanni... The Al_2O_3-(W,Ti)C composites with Ni and Mo additions varying from 0vol% to 12vol% were prepared via hot pressing sintering under 30 MPa. The microstructure was investigated via X-ray diffraction(XRD) and scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS). Mechanical properties such as flexural strength, fracture toughness, and Vickers hardness were also measured. Results show that the main phases A12O3 and(W,Ti)C were detected by XRD. Compound Mo Ni also existed in sintered nanocomposites. The fracture modes of the nanocomposites were both intergranular and transgranular fractures. The plastic deformation of metal particles and crack bridging were the main toughening mechanisms. The maximum flexural strength and fracture toughness were obtained for 9vol% and 12vol% additions of Ni and Mo, respectively. The hardness of the composites reduced gradually with increasing content of metals Ni and Mo. 展开更多
关键词 ceramic matrix nanocomposite metal phase microstructure mechanical properties
下载PDF
Surface Infiltrating Composite of Fe-base Metal and Ceramics
9
作者 石功奇 丁培道 +1 位作者 周守则 潘复生 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第3期222-224,共3页
1.IntroductionMetal matrix composites consist of afamily of advanced materials which mayhave attractive properties including highstrength,high specific modulus,lowcoefficient of thermal expansion,good wearresistance,a... 1.IntroductionMetal matrix composites consist of afamily of advanced materials which mayhave attractive properties including highstrength,high specific modulus,lowcoefficient of thermal expansion,good wearresistance,and attractive high temperature 展开更多
关键词 cast iron ceramicS INFILTRATION composite layer
下载PDF
Residual Thermal Stresses of Laser Cladding of Intermetallic-Ceramic Composite Coatings
10
作者 ZHOU Xianglin HU Hanqi YU Jiahong(Metallurgy Engineering School, USTB, Beijing 100083, China)(Department of Materials Engineering, Shandong University of Technology, 250014) 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1997年第2期31-33,共3页
The stresses in laser cladding of Ni3Al-WC composite coating co and in heat affect zone (HAZ) σh have been induced based on considering the influences of laser processing parameters power P and beam traverse speed v.... The stresses in laser cladding of Ni3Al-WC composite coating co and in heat affect zone (HAZ) σh have been induced based on considering the influences of laser processing parameters power P and beam traverse speed v.According to the calculated results, certain limits of P and v are necessary in order to obtain crack free coatings. It agrees well with the experimental results. 展开更多
关键词 INTERmetalLICS ceramics composite coatings residual thermal stress laser cladding
下载PDF
Research on the Formation of Metal-Ceramic Surface Composite Coating by Wide-Band Laser Cladding 被引量:1
11
作者 LIUShuo ZHANGWei-ping MAYu-tao 《材料热处理学报》 EI CAS CSCD 北大核心 2004年第05B期1025-1028,共4页
Large-area in-situ synthesized TiB2(TiB, Fe2B)—Fe metal-ceramic composite coating has been fabricated on medium carbon steel by laser cladding with the optimal laser parameters and overlapping coefficient. The bondin... Large-area in-situ synthesized TiB2(TiB, Fe2B)—Fe metal-ceramic composite coating has been fabricated on medium carbon steel by laser cladding with the optimal laser parameters and overlapping coefficient. The bonding interfaces between the cladding layer and the matrix and among different tracks are excellent. Microanalysis on the cladding layer shows that the morphology is a little different from each other and the element distribution and the mechanical properties are unanimous in each track while the mechanical property of the cladding layer shows a gradual change from the surface to the matrix. The in-situ separating out thin ceramic phases in the coating contribute to the improving of its properties greatly. 展开更多
关键词 宽带激光包覆 金属陶瓷 显微结构 机械性质
下载PDF
Tribological properties of nanostructured Al_2O_3-40%TiO_2 multiphase ceramic particles reinforced Ni-based alloy composite coatings 被引量:9
12
作者 何龙 谭业发 +2 位作者 谭华 周春华 高立 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第9期2618-2627,共10页
The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and trib... The Ni-based alloy composite coatings reinforced by nanostructured Al2O3-40%TiO2 multiphase ceramic particles were prepared on the surface of 7005 aluminum alloy by plasma spray technology. The microstructure and tribological properties of the composite coatings were researched. The results show that the composite coatings mainly consist of γ-Ni, α-Al2O3, γ-Al2O3 and rutile-TiO2 etc, and exhibit lower friction coefficients and wear losses than the Ni-based alloy coatings at different loads and speeds. The composite coating bears low contact stress at 3 N and its wear mechanism is micro-cutting wear. As loads increase to 6-12 N, the contact stress is higher than the elastic limit stress of worn surface, and the wear mechanisms change into multi-plastic deformation wear, micro-brittle fracture wear and abrasive wear. With the increase of speeds, the contact temperature of worn surface increases. The composite coating experiences multi-plastic deformation wear, fatigue wear and adhesive wear. 展开更多
关键词 nanostructured A1203-TiO2 multiphase ceramic particles Ni-based alloy composite coating plasma spray friction wear
下载PDF
Preparation of Fe-M Intermetallic/TiC-M_2O_3 Ceramic Composites from Ilmenite by SHS
13
作者 邹正光 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期706-709,共4页
Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon... Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃. 展开更多
关键词 ILMENITE Fe-AI intermetallic/TiC-Al2O3 ceramic composites SHS I/CMC
下载PDF
Identification of Growth Promoter to Fabrication SiCp/Al<sub>2</sub>O<sub>3</sub>Ceramic Matrix Composites Prepared by Directed Metal Oxidation of An Al Alloy
14
作者 Malkapuram Devaiah Thodeti Srihari Thankappan Pillai Rajasekharan 《Journal of Minerals and Materials Characterization and Engineering》 2012年第11期1063-1068,共6页
SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promote... SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promoters, will encompasses the early heating of the alloy ingot, melting and continued heating to temperature in the narrow range of 950°C to 980°C in an atmosphere of oxygen. Varying interlayers (dopents) are incorporated to examine the growth conditions of the composite materials and to identification of suitable growth promoter. The process is extremely difficult because molten aluminum does not oxidize after prolonged duration at high temperatures due to the formation of a passivating oxide layer. It is known that the Lanxide Corporation had used a combination of dopents to cause the growth of alumina from molten metal. This growth was directed, i.e. the growth is allowed only in the required direction and restricted in the other directions. The react nature of the dopants was a trade secret. Though it is roughly known that Mg and Si in the Al melt can aid growth, additional dopents used, the temperatures at which the process was carried out, the experimental configurations that aided directed growth were not precisely known. In this paper we have evaluated the conditions in which composites can be grown in large enough sizes for evaluation application and have arrived at a procedure that enables the fabrication of large composite samples by determining the suitable growth promoter (dopant). Scanning electron microscopic, EDS analysis of the composite was found to contain a continuous network of Al2O3, which was predominantly free of grain-boundary phases, a continuous network of Al alloy. Fabrication of large enough samples was done only by the inventor company and the property measurements by the company were confirmed to those needed to enable immediate applications. Since there are a large number of variable affecting robust growth of the composite, fabrication large sized samples for measurements is a difficult task. In the present work, to identify a suitable window of parameters that enables robust growth of the composite has been attempted. 展开更多
关键词 ceramic-Matrix composites Scanning Electron Microscopy Liquid metal INFILTRATION Al2O3 SiC
下载PDF
Preparation and properties of porous silicon carbide ceramics through coat-mix and composite additives process 被引量:2
15
作者 赵宏生 刘中国 +3 位作者 杨阳 刘小雪 张凯红 李自强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1329-1334,共6页
The core-shell structure silicon-resin precursor powders were synthesized through coat-mix process and addition of Al2O3-SiO2-Y2O3 composite additives.A series of porous silicon carbide ceramics were produced after mo... The core-shell structure silicon-resin precursor powders were synthesized through coat-mix process and addition of Al2O3-SiO2-Y2O3 composite additives.A series of porous silicon carbide ceramics were produced after molding,carbonization and sintering.The phase,morphology,porosity,thermal conductivity,thermal expansion coefficient,and thermal shock resistance were analyzed.The results show that porous silicon carbide ceramics can be produced at low temperature.The grain size of porous silicon carbide ceramic is small,and the thermal conductivity is enhanced significantly.Composite additives also improve the thermal shock resistance of porous ceramics.The bending strength loss rate after 30 times of thermal shock test of the porous ceramics which were added Al2O3-SiO2-Y2O3 and sintered at 1 650 ℃ is only 6.5%.Moreover,the pore inside of the sample is smooth,and the pore size distribution is uniform.Composite additives make little effect on the thermal expansion coefficient of the porous silicon carbide ceramics. 展开更多
关键词 silicon carbide porous ceramic coat-mix composite additives
下载PDF
Coarse WC Particles Ceramic-Metal Composite Coating by Laser Cladding
16
作者 曾晓雁 朱蓓蒂 +2 位作者 陶曾毅 杨树国 崔昆 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第3期209-213,共5页
The coarse WC particles ceramic-metal com- posite coatings with WC density of 67 wt-% and thickness of 1.0-1.2 mm have been cladded on 20Ni4Mo steel surface by a 2 kW CO_2 laser.The sintered WC particles with the size... The coarse WC particles ceramic-metal com- posite coatings with WC density of 67 wt-% and thickness of 1.0-1.2 mm have been cladded on 20Ni4Mo steel surface by a 2 kW CO_2 laser.The sintered WC particles with the size of 600-1000 μm are chosen as the main strengthening phase, Ni-base self-flux alloy as the binder in the compo- site coatings.The microstructure and microhardness of both WC particles and binder are analysed.The rigid ball indention with acoustic emission technique is used to evaluate the brittleness of the coating.Finally,the abrasive wear resistance of the coating is tested.Besides,the coatings with the same ratio and size of WC parti- cles in low carbon steel tube rod were cladded on 20Ni4Mo steel by atomic hydrogen welding tech- nique and analysed by the same way,their results are compared. 展开更多
关键词 laser cladding ceramic-metal composite coating BRITTLENESS wear resistance
下载PDF
EFFECT OF FIBER FAILURE ON QUASI-STATIC UNLOADING/RELOADING HYSTERESIS LOOPS OF CERAMIC MATRIX COMPOSITES 被引量:1
17
作者 李龙彪 宋迎东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第1期94-102,共9页
The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the ... The two-parameter Weibull model is used to describe the fiber strength distribution.The stress carried by the intact and fracture fibers on the matrix crack plane during unloading/reloading is determined based on the global load sharing criterion.The axial stress distribution of intact fibers upon unloading and reloading is determined based on the mechanisms of fiber sliding relative to matrix in the interface debonded region.The interface debonded length,unloading interface counter slip length,and reloading interface new slip length are obtained by the fracture mechanics approach.The hysteresis loops corresponding to different stresses considering fiber failure are compared with the cases without considering fiber failure.The effects of fiber characteristic strength and fiber Weibull modulus on the fiber failure,the shape,and the area of the hysteresis loops are analyzed.The predicted quasi-static unloading/reloading hysteresis loops agree well with experimental data. 展开更多
关键词 ceramic matrix composites hysteresis loops matrix cracking interface debonding fiber failure
下载PDF
Metal-Ceramic Smart Composite in Ti(C,N)-Ni-Mo-W System
18
作者 Z. Kovziridze N. Nizharadze +2 位作者 G. Tabatadze E. Nikoleishvili M. Mshvildadze 《Journal of Electronics Cooling and Thermal Control》 2016年第2期42-51,共10页
Goal: Low wolfram-containing cutting composite was obtained by fusion of titanium carbonitride and high melting temperature binding metallic phase. Method: The composite was obtained via compaction and further sinteri... Goal: Low wolfram-containing cutting composite was obtained by fusion of titanium carbonitride and high melting temperature binding metallic phase. Method: The composite was obtained via compaction and further sintering in vacuum furnace at 1600&#176;C under 10<sup>-3</sup> Pa pressure. Phase analysis was performed on X-ray apparatus “DRON-3”;microstructure was determined by electron microscope NANOLAB-7, microhardness by MUCKE-mark microhardness meter;relative resistance of cutters was evaluated at similar modes of cutting according to distances they passed;experiments were carried out on turning lathe. Results: Physical-mechanical characteristics of the obtained composite are: σ<sub>bend</sub>, = 1000 - 1150 MPa, σ<sub>bend1000</sub>&#176;C = 600 MPa, HV = 14 GPa;HV<sub>1000</sub>&#176;C = 6.5 GPa. High speeds of cutting and high temperatures resistance of cutters made by the obtained composites exceeds 1.5 - 2-folds that of cutters made of the known BK8 and KNT20 hard alloys. Conclusion: Its application is recommended in hot steel treatment by cutting, for removal of the so-called burrs, as well as in steel treatment by cutting during pure and semi-pure operations. It can also be used in jet engines, chemical industry apparatuses, electric-vacuum devices, in industry of responsible details of rockets, nuclear reactors, flying apparatuses. 展开更多
关键词 metal-ceramic composite Cutting Material High-Temperature Heatproof Micro Hardness
下载PDF
12.6μm-Thick Asymmetric Composite Electrolyte with Superior Interfacial Stability for Solid-State Lithium-Metal Batteries 被引量:3
19
作者 Zheng Zhang Jingren Gou +4 位作者 Kaixuan Cui Xin Zhang Yujian Yao Suqing Wang Haihui Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期397-409,共13页
Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage ... Solid-state lithium metal batteries(SSLMBs)show great promise in terms of high-energy-density and high-safety performance.However,there is an urgent need to address the compatibility of electrolytes with high-voltage cathodes/Li anodes,and to minimize the electrolyte thickness to achieve highenergy-density of SSLMBs.Herein,we develop an ultrathin(12.6μm)asymmetric composite solid-state electrolyte with ultralight areal density(1.69 mg cm^(−2))for SSLMBs.The electrolyte combining a garnet(LLZO)layer and a metal organic framework(MOF)layer,which are fabricated on both sides of the polyethylene(PE)separator separately by tape casting.The PE separator endows the electrolyte with flexibility and excellent mechanical properties.The LLZO layer on the cathode side ensures high chemical stability at high voltage.The MOF layer on the anode side achieves a stable electric field and uniform Li flux,thus promoting uniform Li^(+)deposition.Thanks to the well-designed structure,the Li symmetric battery exhibits an ultralong cycle life(5000 h),and high-voltage SSLMBs achieve stable cycle performance.The assembled pouch cells provided a gravimetric/volume energy density of 344.0 Wh kg^(−1)/773.1 Wh L^(−1).This simple operation allows for large-scale preparation,and the design concept of ultrathin asymmetric structure also reveals the future development direction of SSLMBs. 展开更多
关键词 Solid-state lithium metal batteries composite solid-state electrolyte Ultrathin asymmetric structure Pouch cells
下载PDF
Laser‑Induced and MOF‑Derived Metal Oxide/Carbon Composite for Synergistically Improved Ethanol Sensing at Room temperature 被引量:2
20
作者 Hyeongtae Lim Hyeokjin Kwon +2 位作者 Hongki Kang Jae Eun Jang Hyuk‑Jun Kwon 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期210-220,共11页
Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing... Advancements in sensor technology have significantly enhanced atmospheric monitoring.Notably,metal oxide and carbon(MO_(x)/C)hybrids have gained attention for their exceptional sensitivity and room-temperature sensing performance.However,previous methods of synthesizing MO_(x)/C composites suffer from problems,including inhomogeneity,aggregation,and challenges in micropatterning.Herein,we introduce a refined method that employs a metal–organic framework(MOF)as a precursor combined with direct laser writing.The inherent structure of MOFs ensures a uniform distribution of metal ions and organic linkers,yielding homogeneous MO_(x)/C structures.The laser processing facilitates precise micropatterning(<2μm,comparable to typical photolithography)of the MO_(x)/C crystals.The optimized MOF-derived MO_(x)/C sensor rapidly detected ethanol gas even at room temperature(105 and 18 s for response and recovery,respectively),with a broad range of sensing performance from 170 to 3,400 ppm and a high response value of up to 3,500%.Additionally,this sensor exhibited enhanced stability and thermal resilience compared to previous MOF-based counterparts.This research opens up promising avenues for practical applications in MOF-derived sensing devices. 展开更多
关键词 metal-organic frameworks metal oxide Carbon composite LASER Gas sensor
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部