期刊文献+
共找到7,998篇文章
< 1 2 250 >
每页显示 20 50 100
Ultraviolet‑Irradiated All‑Organic Nanocomposites with Polymer Dots for High‑Temperature Capacitive Energy Storage
1
作者 Jiale Ding Yao Zhou +5 位作者 Wenhan Xu Fan Yang Danying Zhao Yunhe Zhang Zhenhua Jiang Qing Wang 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期398-406,共9页
Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have bee... Polymer dielectrics capable of operating efficiently at high electric fields and elevated temperatures are urgently demanded by next-generation electronics and electrical power systems.While inorganic fillers have been extensively utilized to improved high-temperature capacitive performance of dielectric polymers,the presence of thermodynamically incompatible organic and inorganic components may lead to concern about the long-term stability and also complicate film processing.Herein,zero-dimensional polymer dots with high electron affinity are introduced into photoactive allyl-containing poly(aryl ether sulfone)to form the all-organic polymer composites for hightemperature capacitive energy storage.Upon ultraviolet irradiation,the crosslinked polymer composites with polymer dots are efficient in suppressing electrical conduction at high electric fields and elevated temperatures,which significantly reduces the high-field energy loss of the composites at 200℃.Accordingly,the ultraviolet-irradiated composite film exhibits a discharged energy density of 4.2 J cm^(−3)at 200℃.Along with outstanding cyclic stability of capacitive performance at 200℃,this work provides a promising class of dielectric materials for robust high-performance all-organic dielectric nanocomposites. 展开更多
关键词 High-temperature energy storage polymer dots Ultraviolet irradiation All-organic composite dielectrics
下载PDF
Structural evolution of plasma sprayed amorphous Li_(4)Ti_(5)O_(12) electrode and ceramic/polymer composite electrolyte during electrochemical cycle of quasi-solid-state lithium battery 被引量:2
2
作者 Xi Wu Xinghua Liang +3 位作者 Xiaofeng Zhang Lingxiao Lan Suo Li Qixin Gai 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第2期347-354,共8页
A quasi-solid-state lithium battery is assembled by plasma sprayed amorphous Li_(4)Ti_(5)O_(12) to provide the outstanding electrochemical stability and better normal interface contact.Scanning Electron Microscope(SEM... A quasi-solid-state lithium battery is assembled by plasma sprayed amorphous Li_(4)Ti_(5)O_(12) to provide the outstanding electrochemical stability and better normal interface contact.Scanning Electron Microscope(SEM),Scanning Transmission Electron Microscopy(STEM),Transmission Electron Microscopy(TEM),and Energy Dispersive Spectrometer(EDS)were used to analyze the structural evolution and performance of plasma sprayed amorphous LTO electrode and ceramic/polymer composite electrolyte before and after electrochemical experiments.By comparing the electrochemical performance of the amorphous LTO electrode and the traditional LTO electrode,the electrochemical behavior of different electrodes is studied.The results show that plasma spraying can prepare an amorphous LTO electrode coating of about 8μm.After 200 electrochemical cycles,the structure of the electrode evolved,and the inside of the electrode fractured and cracks expanded,because of recrystallization at the interface between the rich fluorine compounds and the amorphous LTO electrode.Similarly,the ceramic/polymer composite electrolyte has undergone structural evolution after 200 test cycles.The electrochemical cycle results show that the cycle stability,capacity retention rate,coulomb efficiency,and internal impedance of amorphous LTO electrode are better than traditional LTO electrode.This innovative and facile quasi-solid-state strategy is aimed to promote the intrinsic safety and stability of working lithium battery,shedding light on the development of next-generation high-performance solid-state lithium batteries. 展开更多
关键词 plasma spraying Li_(4)Ti_(5)O_(12)(LTO)electrode ceramic/polymer composite electrolyte electrochemical cycle quasi-solid-state lithium battery
原文传递
The Critical Role of Fillers in Composite Polymer Electrolytes for Lithium Battery 被引量:3
3
作者 Xueying Yang Jiaxiang Liu +5 位作者 Nanbiao Pei Zhiqiang Chen Ruiyang Li Lijun Fu Peng Zhang Jinbao Zhao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期339-375,共37页
With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an e... With excellent energy densities and highly safe performance,solidstate lithium batteries(SSLBs)have been hailed as promising energy storage devices.Solid-state electrolyte is the core component of SSLBs and plays an essential role in the safety and electrochemical performance of the cells.Composite polymer electrolytes(CPEs)are considered as one of the most promising candidates among all solid-state electrolytes due to their excellent comprehensive performance.In this review,we briefly introduce the components of CPEs,such as the polymer matrix and the species of fillers,as well as the integration of fillers in the polymers.In particular,we focus on the two major obstacles that affect the development of CPEs:the low ionic conductivity of the electrolyte and high interfacial impedance.We provide insight into the factors influencing ionic conductivity,in terms of macroscopic and microscopic aspects,including the aggregated structure of the polymer,ion migration rate and carrier concentration.In addition,we also discuss the electrode-electrolyte interface and summarize methods for improving this interface.It is expected that this review will provide feasible solutions for modifying CPEs through further understanding of the ion conduction mechanism in CPEs and for improving the compatibility of the electrode-electrolyte interface. 展开更多
关键词 composite polymer electrolytes FILLERS Ionic conductivity Electrode-electrolyte interface
下载PDF
Tailoring Practically Accessible Polymer/Inorganic Composite Electrolytes for All-Solid-State Lithium Metal Batteries:A Review 被引量:3
4
作者 Hongmei Liang Li Wang +4 位作者 Aiping Wang Youzhi Song Yanzhou Wu Yang Yang Xiangming He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期266-297,共32页
Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state el... Solid-state electrolytes(SSEs)are widely considered the essential components for upcoming rechargeable lithium-ion batteries owing to the potential for great safety and energy density.Among them,polymer solid-state electrolytes(PSEs)are competitive candidates for replacing commercial liquid electrolytes due to their flexibility,shape versatility and easy machinability.Despite the rapid development of PSEs,their practical application still faces obstacles including poor ionic conductivity,narrow electrochemical stable window and inferior mechanical strength.Polymer/inorganic composite electrolytes(PIEs)formed by adding ceramic fillers in PSEs merge the benefits of PSEs and inorganic solid-state electrolytes(ISEs),exhibiting appreciable comprehensive properties due to the abundant interfaces with unique characteristics.Some PIEs are highly compatible with high-voltage cathode and lithium metal anode,which offer desirable access to obtaining lithium metal batteries with high energy density.This review elucidates the current issues and recent advances in PIEs.The performance of PIEs was remarkably influenced by the characteristics of the fillers including type,content,morphology,arrangement and surface groups.We focus on the molecular interaction between different components in the composite environment for designing high-performance PIEs.Finally,the obstacles and opportunities for creating high-performance PIEs are outlined.This review aims to provide some theoretical guidance and direction for the development of PIEs. 展开更多
关键词 polymer Inorganic composite electrolytes All-solid-state lithium metal batteries FILLERS Ionic conductivity High voltage
下载PDF
Optimized CeO_(2) Nanowires with Rich Surface Oxygen Vacancies Enable Fast Li-Ion Conduction in Composite Polymer Electrolytes 被引量:1
5
作者 Lu Gao Nan Wu +7 位作者 Nanping Deng Zhenchao Li Jianxin Li Yong Che Bowen Cheng Weimin Kang Ruiping Liu Yutao Li 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期218-223,共6页
Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)t... Low-cost and flexible solid polymer electrolytes are promising in all-solid-state Li-metal batteries with high energy density and safety.However,both the low room-temperature ionic conductivities and the small Li^(+)transference number of these electrolytes significantly increase the internal resistance and overpotential of the battery.Here,we introduce Gd-doped CeO_(2) nanowires with large surface area and rich surface oxygen vacancies to the polymer electrolyte to increase the interaction between Gd-doped CeO_(2) nanowires and polymer electrolytes,which promotes the Li-salt dissociation and increases the concentration of mobile Li ions in the composite polymer electrolytes.The optimized composite polymer electrolyte has a high Li-ion conductivity of 5×10^(-4)4 S cm^(-1) at 30℃ and a large Li+transference number of 0.47.Moreover,the composite polymer electrolytes have excellent compatibility with the metallic lithium anode and high-voltage LiNi_(0.8)Mn _(0.1)Co_(0.1)O_(2)(NMC)cathode,providing the stable cycling of all-solid-state batteries at high current densities. 展开更多
关键词 composite polymer electrolytes Gd-doped CeO_(2)nanowires Li-ion conduction oxygen vacancies surface interaction
下载PDF
Oxidation behavior of Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(x)C(M=Ti,Zr,Hf,Nb,Ta) composite ceramic at high temperature
6
作者 徐帅 王韬 +7 位作者 王新刚 吴璐 方忠强 葛芳芳 蒙萱 廖庆 魏金春 李炳生 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期629-637,共9页
Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M... Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C-M_(t)C composite ceramic was prepared by hot press sintering,with the Ti_(0.2)Zr_(0.2)Hf_(0.2)Nb_(0.2)Ta_(0.2)C high-entropy carbide as the main phase.Secondary phase M_(x)C(M=Ti,Zr,Hf,Nb,Ta) was found to be distributed relatively uniform in the composite ceramic.The oxidation behavior of the ceramic was examined after exposure to 923 K and 1173 K.Morphology of the surface and cross sections of all oxidation samples were observed.The characteristics of the oxidation behavior of the high-entropy carbide and the secondary phase M_(x)C were compared and analyzed.The secondary phases(such as Ti-rich carbide or Hf-rich carbide) in the material were seriously oxidized at 923 K and 1173 K,which reflects the superior oxidation performance of the high-entropy carbide.The nano high-entropy oxides with Ti,Zr,Hf,Nb,Ta,and O elements were discovered by oxidation of the composite ceramic.This research will help deepen the understanding of the oxidation mechanism of high-entropy carbide and composite ceramic. 展开更多
关键词 ceramic composites oxidation oxide surface microstructure
下载PDF
Composite polymer electrolyte reinforced by graphitic carbon nitride nanosheets for room-temperature all-solid-state lithium batteries
7
作者 Qingyue Han Suqing Wang +2 位作者 Wenhan Kong Bing Ji Haihui Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期257-263,共7页
By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic... By virtue of the flexibility and safety, polyethylene oxide(PEO) based electrolytes are regarded as an appealing candidate for all-solid-state lithium batteries. However, their application is limited by the poor ionic conductivity at room temperature, narrow electrochemical stability window and uncontrolled growth of lithium dendrite. To alleviate these problems, we introduce the ultrathin graphitic carbon nitride nanosheets(GCN) as advanced nanofillers into PEO based electrolytes(GCN-CPE). Benefiting from the high surface area and abundant surface N-active sites of GCN, the GCN-CPE displays decreased crystallinity and enhanced ionic conductivity. Meanwhile, Fourier transform infrared and chronoamperometry studies indicate that GCN can facilitate Li+migration in the composite electrolyte. Additionally, the GCN-CPE displays an extended electrochemical window compared with PEO based electrolytes. As a result, Li symmetric battery assembled with GCN-CPE shows a stable Li plating/stripping cycling performance, and the all-solid-state Li/LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622) batteries using GCN-CPE exhibit satisfactory cyclability and rate capability in a voltage range of 3-4.2 V at 30 ℃. 展开更多
关键词 Electrolytes polymerS Graphitic carbon nitride nanosheets composites Room temperature All-solid-state battery
下载PDF
Shape Memory Polymer Composite Booms with Applications in Reel-Type Solar Arrays
8
作者 Hong Xiao Sijie Wu +4 位作者 Dongdong Xie Hongwei Guo Li Ma Yuxuan Wei Rongqiang Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第3期326-338,共13页
Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-pow... Solar arrays are the primary energy source for spacecraft.Although traditional rigid solar arrays improve power supply,the quality increases proportionally.Hence,it is difficult to satisfy the requirements of high-power and low-cost space applications.In this study,a shape-memory polymer composite(SMPC)boom was designed,fabricated,and characterized for flexible reel-type solar arrays.The SMPC boom was fabricated from a smart material,a shape-memory polymer composite,whose mechanical properties were tested.Additionally,a mathematical model of the bending stiffness of the SMPC boom was developed,and the bending and buckling behaviors of the boom were further analyzed using the ABAQUS software.An SMPC boom was fabricated to demonstrate its shape memory characteristics,and the driving force of the booms with varying geometric parameters was investigated.We also designed and manufactured a reel-type solar array based on an SMPC boom and verified its self-deployment capability.The results indicated that the SMPC boom can be used as a deployable unit to roll out flexible solar arrays. 展开更多
关键词 Shape memory polymer composite Reel-type solar array Deployable boom Bending behavior
下载PDF
Wearable and stretchable conductive polymer composites for strain sensors:How to design a superior one?
9
作者 Liwei Lin Sumin Park +6 位作者 Yuri Kim Minjun Bae Jeongyeon Lee Wang Zhang Jiefeng Gao Sun Ha Paek Yuanzhe Piao 《Nano Materials Science》 EI CAS CSCD 2023年第4期392-403,共12页
Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly ... Wearable and stretchable strain sensors have potential values in the fields of human motion and health monitoring,flexible electronics,and soft robotic skin.The wearable and stretchable strain sensors can be directly attached to human skin,providing visualized detection for human motions and personal healthcare.Conductive polymer composites(CPC)composed of conductive fillers and flexible polymers have the advantages of high stretchability,good flexibility,superior durability,which can be used to prepare flexible strain sensors with large working strain and outstanding sensitivity.This review has put forward a comprehensive summary on the fabrication methods,advanced mechanisms and strain sensing abilities of CPC strain sensors reported in recent years,especially the sensors with superior performance.Finally,the structural design,bionic function,integration technology and further application of CPC strain sensors are prospected. 展开更多
关键词 Wearable strain sensors Conductive polymer composites MECHANISM Sensing performance
下载PDF
Multifunctional characteristics of 3D printed polymer nanocomposites under monotonic and cyclic compression
10
作者 Pawan Verma Jabir Ubaid +2 位作者 Fahad Alam Suleyman Deveci S.Kumar 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第12期13-22,共10页
This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-stati... This study presents the multifunctional characteristics of multi-walled carbon nanotube(MWCNT)/polypropylene random copolymer(PPR) composites enabled via fused filament fabrication(FFF) under monotonic and quasi-static cyclic compression. Utilizing in-house MWCNT-engineered PPR filament feedstocks, both bulk and cellular composites were realized. The morphological features of nanocomposites were examined via scanning electron microscopy, which reveals that MWCNTs are uniformly dispersed. The uniformly dispersed MWCNTs forms an electrically conductive network within the PPR matrix, and the resulting nanocomposite shows good electrical conductivity(~10^(-1)S/cm), improved mechanical performance(modulus increases by 125% and compressive strength increases by 25% for 8 wt% MWCNT loading) and pronounced piezoresistive response(gauge factor of 27.9-8.5 for bulk samples)under compression. The influence of strain rate on the piezoresistive response of bulk samples(4 wt% of MWCNT) under compression was also measured. Under repeated cyclic compression(2% constant strain amplitude), the nanocomposite exhibited stable piezoresistive performance up to 100 cycles. The piezoresistive response under repeated cyclic loading with increasing strain amplitude of was also assessed.The gauge factor of BCC and FCC cellular composites(4 wt% of MWCNT) with a relative density of 30%was observed to be 46.4 and 30.2 respectively, under compression. The higher sensitivity of the BCC plate-lattice could be attributed to its higher degree of stretching-dominated deformation behavior than the FCC plate-lattice, which exhibits bending-dominated behavior. The 3D printed cellular PPR/MWCNT composites structures were found to show excellent piezoresistive self-sensing characteristics and open new avenues for in situ structural health monitoring in various applications. 展开更多
关键词 Carbon nanotubes Nanoengineered polymer composites 3D printing Piezoresistive self-sensing Lattice structures
下载PDF
Effects of Co_(2)O_(3)Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage
11
作者 ZHOU Yang WU Jianfeng +3 位作者 TIAN Kezhong XU Xiaohong MA Sitong LIU Shaoheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1269-1277,共9页
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ... SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples. 展开更多
关键词 SiC composite ceramics Co_(2)O_(3) microstructure solar absorption thermal storage density
下载PDF
Durability Testing of Composite Aerospace Materials Based on a New Polymer Carbon Fiber-Reinforced Epoxy Resin
12
作者 Jinlong Shang 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2315-2327,共13页
In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the micr... In this study,the durability of a new polymer carbonfiber-reinforced epoxy resin used to produce composite material in the aerospacefield is investigated through analysis of the corrosion phenomena occurring at the microscopic scale,and the related infrared spectra and thermal properties.It is found that light and heat can con-tribute to the aging process.In particular,the longitudinal tensile strength displays a non-monotonic trend,i.e.,itfirst increases and then decreases over time.By contrast,the longitudinal compressive and inter-laminar shear strengths do not show significant changes.It is also shown that the inter-laminar shear strength of carbonfiber/epoxy resin composites with inter-laminar hybrid structure is better than that of pure carbonfiber materials.The related resistance to corrosion can be improved by more than 41%. 展开更多
关键词 polymer aerospace materials corrosion carbonfiber composite material epoxy resin mechanical properties thermal analysis
下载PDF
Chemicals Used in Polymeric Material Coated Waste Paper Composites
13
作者 Zübeyde Bülbül Birol Üner 《Journal of Materials Science and Chemical Engineering》 2023年第5期1-10,共10页
In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), ... In this research, at different quantities as fillers, Boric Acid, Calcite (CaCO<sub>3</sub>), SPT (Sodium Perborate Tetrahydrate) and as coupling matters, 3%, MAPE (Maleic Anhydride Grafted Polyethylene), Titanate and Silanyl (Vinyltriethoxysilane) were added waste paper. Composite boards were pressed and cut in 1 × 30 × 30 cm. In order to identify some properties of the produced boards, experimental works were applied according to the standards. In conclusion, bending stress reduced with filler materials and chemicals was reduced even more than the bending stress except for some experimental groups. In addition, it was observed that the coupling chemicals increased the bending strength and modulus of elasticity compared to the fillers. 展开更多
关键词 Matching Chemicals Paper composites Filling Materials polymerS Coupling Agents Paper Fibers
下载PDF
Analysis of Vibrations of Roller of the Polymer Composite Coating Equipment on Stitches of Tarpaulin Materials
14
作者 Shavkat Behbudov Anvar Djurayev +2 位作者 Juramirza Kayumov Urinboy Kuryozov Mehrinur Samadova 《Engineering(科研)》 2023年第10期709-719,共11页
The article presents a structural diagram and the principle of operation of the installation of a sewing machine for applying a polymer composition to the stitch lines of tarpaulin materials. The calculation schemes a... The article presents a structural diagram and the principle of operation of the installation of a sewing machine for applying a polymer composition to the stitch lines of tarpaulin materials. The calculation schemes and the mathematical model of oscillations of the axis of the composite roller during the application of the polymer composition along the lines of tarpaulin materials are presented. Based on the numerical solution of the problem, the regularities of roller oscillations are presented. The main parameters of the system are substantiated. 展开更多
关键词 Sewing Machine Device ROLLER polymer composition Vibration RIGIDITY
下载PDF
Supposition of graphene stacks to estimate the contact resistance and conductivity of nanocomposites
15
作者 Y.ZARE M.T.MUNIR +1 位作者 G.J.WENG K.Y.RHEE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期663-676,共14页
In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equ... In this study,the effects of stacked nanosheets and the surrounding interphase zone on the resistance of the contact region between nanosheets and the tunneling conductivity of samples are evaluated with developed equations superior to those previously reported.The contact resistance and nanocomposite conductivity are modeled by several influencing factors,including stack properties,interphase depth,tunneling size,and contact diameter.The developed model's accuracy is verified through numerous experimental measurements.To further validate the models and establish correlations between parameters,the effects of all the variables on contact resistance and nanocomposite conductivity are analyzed.Notably,the contact resistance is primarily dependent on the polymer tunnel resistivity,contact area,and tunneling size.The dimensions of the graphene nanosheets significantly influence the conductivity,which ranges from 0 S/m to90 S/m.An increased number of nanosheets in stacks and a larger gap between them enhance the nanocomposite's conductivity.Furthermore,the thicker interphase and smaller tunneling size can lead to higher sample conductivity due to their optimistic effects on the percolation threshold and network efficacy. 展开更多
关键词 graphene polymer composite stacked nanosheet tunneling conductivity contact resistance INTERPHASE
下载PDF
Highly Elastic,Bioresorbable Polymeric Materials for Stretchable,Transient Electronic Systems
16
作者 Jeong‑Woong Shin Dong‑Je Kim +12 位作者 Tae‑Min Jang Won Bae Han Joong Hoon Lee Gwan‑Jin Ko Seung Min Yang Kaveti Rajaram Sungkeun Han Heeseok Kang Jun Hyeon Lim Chan‑Hwi Eom Amay J.Bandodkar Hanul Min Suk‑Won Hwang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期1-13,共13页
Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very lim... Substrates or encapsulants in soft and stretchable formats are key components for transient,bioresorbable electronic systems;however,elastomeric polymers with desired mechanical and biochemical properties are very limited compared to nontransient counterparts.Here,we introduce a bioresorbable elastomer,poly(glycolide-co-ε-caprolactone)(PGCL),that contains excellent material properties including high elongation-at-break(<1300%),resilience and toughness,and tunable dissolution behaviors.Exploitation of PGCLs as polymer matrices,in combination with conducing polymers,yields stretchable,conductive composites for degradable interconnects,sensors,and actuators,which can reliably function under external strains.Integration of device components with wireless modules demonstrates elastic,transient electronic suture system with on-demand drug delivery for rapid recovery of postsurgical wounds in soft,time-dynamic tissues. 展开更多
关键词 Biodegradable elastomer Conductive polymer composites Biomedical device Transient electronics
下载PDF
Progress in the application of polymer fibers in solid electrolytes for lithium metal batteries
17
作者 Junbao Kang Nanping Deng +1 位作者 Bowen Cheng Weimin Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期26-42,共17页
Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed... Solid state lithium metal batteries(SSLMBs)are considered to be one of the most promising battery systems for achieving high energy density and excellent safety for energy storage in the future.However,current existed solid-state electrolytes(SSEs)are still difficult to meet the practical application requirements of SSLMBs.In this review,based on the analysis of main problems and challenges faced by the development of SSEs,the ingenious application and latest progresses including specific suggestions of various polymer fibers and their membrane products in solving these issues are emphatically reviewed.Firstly,the inherent defects of inorganic and organic electrolytes are pointed out.Then,the application strategies of polymer fibers/fiber membranes in strengthening strength,reducing thickness,enhancing thermal stability,increasing the film formability,improving ion conductivity and optimizing interface stability are discussed in detail from two aspects of improving physical structure properties and electrochemical performances.Finally,the researches and development trends of the intelligent applications of high-performance polymer fibers in SSEs is prospected.This review intends to provide timely and important guidance for the design and development of polymer fiber composite SSEs for SSLMBs. 展开更多
关键词 composite solide lectrolytes polymer fibers Solid-state lithium metal batteries Solid-stateel ectrolytes Nanofiber membranes
下载PDF
Evaluation of Dielectric Properties of CCTO-BT/Epoxy Composites for Electronic Applications
18
作者 Swagatika Mishra Punyapriya Mishra +3 位作者 Punyatoya Mishra Dinesh Kumar Mishra Krushna Prasad Shadangi Deepak Kumar Mohapatra 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第1期69-77,共9页
In the current study,the calcium copper titanate(CCTO)/epoxy,barium titanate(BT)/epoxy and CCTO-BT/epoxy composite samples with variable volume fractions of CCTO and BT are fabricated using hand lay-up and compression... In the current study,the calcium copper titanate(CCTO)/epoxy,barium titanate(BT)/epoxy and CCTO-BT/epoxy composite samples with variable volume fractions of CCTO and BT are fabricated using hand lay-up and compression moulding process. The composite samples are characterized for the frequency dependence on dielectric properties,conductivity,impedance spectroscopy and electrical modulus.X-ray diffraction(XRD)representation of CCTO-BT/epoxy composite samples confirmed the presence of both CCTO and BT ceramic samples separately. The dielectric characteristics of hybrid CCTO-BT/epoxy composite samples with CCTO∶BT ratio of 40∶60, 60∶40,and 50∶50 was found relatively better than those of single ceramic filler reinforced epoxy composites. AC conductivity analysis shows improvement in the results of hybrid filler-filled CCTO-BT/epoxy composites in comparison with single filler-filled epoxy composite.50∶50 CCTO-BT/epoxy composite shows the best AC conductivity value of~ 2.2 ×10^(-5) ohm^(-1)·m^(-1) at a higher frequency of 1MHz. The impedance analysis confirms the higher insulating properties for hybrid 40∶60 and 60∶40 CCTO-BT/epoxy composites with respect to the single and other hybrid ceramic epoxy composites. The analysis suggests the hybrid CCTO-BT/epoxy composites to be adopted as a potential dielectric material for energy storage devices and other electronic applications. 展开更多
关键词 ceramic filler dielectric characterization hybrid composite AC conductivity impedance analysis
下载PDF
Physical and Chemical Properties of Horns Sheaths Particles for the Manufacture of Composite Materials
19
作者 Tawe Laynde Zakari Yaou +2 位作者 Karga Tapsia Lionel Konai Noel Danwe Raidandi 《Journal of Materials Science and Chemical Engineering》 2024年第5期1-9,共9页
Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated betwe... Salvaged cow horns from slaughterhouses have been transformed into fine particles for a physical characterization that has led us to determine the humidity rate (2.34% ± 0.054%), the actual density situated between 0.586 g/cm<sup>3</sup> and 0.732 g/cm<sup>3</sup>, the swelling rate (12%), and one chemical characterization that permitted us to determine the rate of dry matters (97.05%), of mineral matters (2.5%), of protein matters (94.52%). From these weak values, it can easily be seen that cow horn case doesn’t absorb much water and improve the mechanical characteristics of the composite;the high rate of protein shows that keratin which is the structural molecule favors its gripping as reinforcing element in the manufacturing of composite materials. 展开更多
关键词 HORNS Fibers polymer Loads Physical Properties Chemical composition
下载PDF
Research Progress on the Preparation of Inorganic/Natural Materials Composite Microspheres
20
作者 Jing Cao Chaojie Feng Wen Duan 《Expert Review of Chinese Chemical》 2024年第1期15-20,共6页
Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them su... Microspheres are a new type of drug carrier with great potential for development and application.Natural polymers have good biocompatibility,biodegradability,and are easily dispersed in living organisms,making them suitable for preparing microspheres.Inorganic materials(mainly inorganic minerals)have excellent mechanical properties and are inexpensive and easy to obtain.Through the coupling and hybridization of natural polymers and inorganic materials,they can complement each other's advantages and synergistically enhance efficiency,resulting in many excellent physical and chemical properties.Inorganic materials/natural polymer composite microspheres can be prepared by modifying natural polymers with inorganic materials through various methods such as emulsification crosslinking,solution mixing,in-situ synthesis,extrusion,etc.The application of inorganic materials/natural polymer composite microspheres in drug delivery systems has significant sustained-release effects,is safe and non-toxic,and the cost of carrier materials is relatively low,which has certain significance for the development of new drug carriers.This article reviews the recent research on the preparation,drug loading and release properties of inorganic material/natural polymer composite microspheres,analyzes the advantages and disadvantages of commonly used preparation methods,and looks forward to the development direction of composite microspheres. 展开更多
关键词 natural polymer materials composite microspheres PREPARATION research progress
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部