期刊文献+
共找到2,566篇文章
< 1 2 129 >
每页显示 20 50 100
Friction Characteristics Between Marine Clay and Construction Materials
1
作者 KOU Hailei HUANG Jiaming CHENG Yang 《Journal of Ocean University of China》 CAS CSCD 2024年第2期427-437,共11页
Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between mar... Structure-soil interface friction characteristics is of importance to investigate the interaction between engineering structures and soils,especially for offshore structures.The interface friction behavior between marine clay and structural materials with different roughness was studied in this paper by using 3D optical scanning tests,a modified direct shear device and numerical simulation.Relationships between the surface roughness of structures,water content and interface friction angle were presented by model tests.The increase of water contents decreased the interface friction angles.For interfaces with different roughness,the interface friction angles will be smaller than that of the soil when the water content exceeds a certain value.The roughness of the interface and the water content of the soil are mutually coupled to influence the coefficient of friction(COF).This paper proposed a Finite Element Method(FEM)to simulate the interface direct shear tests of structures with different roughness.The surface models with different roughness are established based on the structure data obtained by 3D scanning.The Coupled Eulerian-Lagrangian(CEL)approach was employed to analyse soils sheared by irregular surfaces.The interface behavior for interfaces with different roughness under cyclic shear stresses was analyzed by FEM. 展开更多
关键词 marine clay construction material interface friction behavior surface roughness Finite Element Method
下载PDF
Existence and numerical approximation of a solution to frictional contact problem for electro-elastic materials
2
作者 Othman Baiz EL-Hassan Benkhira Rachid Fakhar 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第2期201-219,共19页
In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coul... In this paper,a frictional contact problem between an electro-elastic body and an electrically conductive foundation is studied.The contact is modeled by normal compliance with finite penetration and a version of Coulomb’s law of dry friction in which the coefficient of friction depends on the slip.In addition,the effects of the electrical conductivity of the foundation are taken into account.This model leads to a coupled system of the quasi-variational inequality of the elliptic type for the displacement and the nonlinear variational equation for the electric potential.The existence of a weak solution is proved by using an abstract result for elliptic variational inequalities and a fixed point argument.Then,a finite element approximation of the problem is presented.Under some regularity conditions,an optimal order error estimate of the approximate solution is derived.Finally,a successive iteration technique is used to solve the problem numerically and a convergence result is established. 展开更多
关键词 piezoelectric material frictional contact variational Inequality fixed point process finite element method error estimation iteration method
下载PDF
Low-cost solid FeS lubricant as a possible alternative to MoS2 for producing Fe-based friction materials 被引量:5
3
作者 Tao Peng Qing-zhi Yan +2 位作者 Yan Zhang Xiao-jiao Shi Ming-yang Ba 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第1期115-121,共7页
Three reaction systems of MoS_2-Fe, FeS -Fe, and Fe S-Fe-Mo were designed to investigate the use of FeS as an alternative to MoS_2 for producing Fe-based friction materials. Samples were prepared by powder metallurgy,... Three reaction systems of MoS_2-Fe, FeS -Fe, and Fe S-Fe-Mo were designed to investigate the use of FeS as an alternative to MoS_2 for producing Fe-based friction materials. Samples were prepared by powder metallurgy, and their phase compositions, microstructures, mechanical properties, and friction performance were characterized. The results showed that MoS_2 reacts with the matrix to produce iron-sulfides and Mo when sintered at 1050°C. Iron-sulfides produced in the MoS_2-Fe system were distributed uniformly and continuously in the matrix, leading to optimal mechanical properties and the lowest coefficient of friction among the systems studied. The lubricity observed was hypothesized to originate from the iron-sulfides produced. The Fe S-Fe-Mo system showed a phase composition, porosity, and density similar to those of the MoS_2-Fe system, but an uneven distribution of iron-sulfides and Mo in this system resulted in less-optimal mechanical properties. Finally, the Fe S-Fe system showed the poorest mechanical properties among the systems studied because of the lack of Mo reinforcement. In friction tests, the formation of a sulfide layer contributed to a decrease in coefficient of friction(COF) in all of the samples. 展开更多
关键词 friction materials solid lubricants iron sulfides molybdenum sulfides
下载PDF
Materials flow and phase transformation in friction stir welding of Al 6013/Mg 被引量:17
4
作者 Pooya POURAHMAD Mehrdad ABBASI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1253-1261,共9页
Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and m... Material flow and phase transformation were studied at the interface of dissimilar joint between Al 6013 and Mg, produced by stir friction welding (FSW) experiments. Defect-free weld was obtained when aluminum and magnesium were placed in the advancing side and retreating side respectively and the tool was placed 1 mm off the weld centerline into the aluminum side. In order to understand the material flow during FSW, steel shots were implanted as indexes into the welding path. After welding, using X-ray images, secondary positions of the steel shots were evaluated. It was revealed that steel shots implanted in advancing side were penetrated from the advancing side into the retreating side, whereas the shots implanted in the retreating side remained in the retreating side, without penetrating into the advancing side. The welded specimens were also heat treated. The effects of heat treatment on the mechanical properties of the welds and the formation of new intermetallic layers were investigated. Two intermetallic compounds, Al3Mg2 and Al12Mg17, were formed sequentially at Al6013/Mg interface. 展开更多
关键词 dissimilar welding friction stir welding INTERFACE material flow intermetallic compounds mechanical properties aluminum 6013 MAGNESIUM
下载PDF
Solid FeS lubricant: a possible alternative to MoS2 for Cu–Fe-based friction materials 被引量:2
5
作者 Tao Peng Qing-zhi Yan +1 位作者 Xiao-lu Zhang Xiao-jiao Shi 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2017年第11期1278-1283,共6页
Molybdenum disulfide(MoS_2) is one of the most commonly used solid lubricants for Cu–Fe-based friction materials. Nevertheless, MoS_2 reacts with metal matrices to produce metal sulfides(e.g., FeS) and Mo during sint... Molybdenum disulfide(MoS_2) is one of the most commonly used solid lubricants for Cu–Fe-based friction materials. Nevertheless, MoS_2 reacts with metal matrices to produce metal sulfides(e.g., FeS) and Mo during sintering, and the lubricity of the composite may be related to the generation of FeS. Herein, the use of FeS as an alternative to MoS_2 for producing Cu–Fe-based friction materials was investigated. According to the reaction principle of thermodynamics, two composites—one with MoS_2(Fe–Cu–MoS_2 sample) and the other with FeS(FeS–Cu_2S–Cu–Fe–Mo sample), were prepared and their friction behaviors and mechanical properties were compared. The results showed that MoS_2 reacted with the Cu–Fe matrix to produce FeS, metallic ternary sulfides, and Mo when sintered at 1050°C. The MoS_2–Cu–Fe and FeS–Cu_2S–Cu–Fe–Mo samples thereby exhibited similar characteristics with respect to phase composition, density, hardness, and tribological behaviors. Micrographs of the worn surfaces revealed that the stable friction regime for both composites stemmed from the iron sulfides friction layers rather than from the molybdenum sulfides layers. 展开更多
关键词 friction materials SOLID lubricants iron sulfides MOLYBDENUM sulfides
下载PDF
Analysis of a quasistatic contact problem with adhesion and nonlocal friction for viscoelastic materials 被引量:2
6
作者 Arezki TOUZALINE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第5期623-634,共12页
A mathematical model is established to describe a contact problem between a deformable body and a foundation. The contact is bilateral and modelled with a nonlocal friction law, in which adhesion is taken into account... A mathematical model is established to describe a contact problem between a deformable body and a foundation. The contact is bilateral and modelled with a nonlocal friction law, in which adhesion is taken into account. Evolution of the bonding field is described by a first-order differential equation. The materials behavior is modelled with a nonlinear viscoelastic constitutive law. A variational formulation of the mechanical problem is derived, and the existence and uniqueness of the weak solution can be proven if the coefficient of friction is sufficiently small. The proof is based on arguments of time-dependent variational inequalities, differential equations, and the Banach fixed-point theorem. 展开更多
关键词 viscoelastic materials ADHESION nonlocal friction fixed point weak solution
下载PDF
Impact and Friction Sensitivity of Energetic Materials:Methodical Evaluation of Technological Safety Features 被引量:2
7
作者 Aleksandr Smirnov Oleg Voronko +1 位作者 Boris Korsunsky Tatyana Pivina 《火炸药学报》 EI CAS CSCD 北大核心 2015年第3期1-8,共8页
Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instru... Key methods developed and used in the USSR and in the Russian Federation to determine the impact and friction sensitivity of energetic materials and explosives have been discussed.Experimental methodologies and instruments that underlie the assessment of their production and handling safety have been described.Studies of a large number of compounds have revealed relationships between their sensitivity parameters and structure of individual compounds and compositions.The range of change of physical and chemical characteristics for the compounds we examined covers the entire region of their existence.Theoretical methodology and equations have been formulated to estimate the impact and friction sensitivity parameters of energetic materials and to evaluate the technological safety in use.The developed methodology is characterized by high-accuracy calculations and prediction of sensitivity parameters. 展开更多
关键词 energetic materials experimental testing friction sensitivity impact sensitivity regressive analysis safety in use methodical evaluation
下载PDF
Effect of ZrSiO_4 on the Friction Performance of Automotive Brake Friction Materials 被引量:1
8
作者 Mustafa BOZ Adem KURT 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第6期843-850,共8页
Friction-wear properties of the ZrSiO4 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were ... Friction-wear properties of the ZrSiO4 reinforced samples were measured and compared with those of plain bronze based ones. For this purpose, density, hardness, friction coefficient wear behaviour of the samples were tested. Microstructures of samples before and after sintering and worn surfaces were also investigated by scanning electron microscopy (SEM), and the wear types were determined. The optimum friction-wear behaviour was obtained in the sample compacted at 500 MPa and sintered at 820℃. Density of the final samples decreased with increasing the amount of reinforcing elements (ZrSiO4) before pre-sintering. However after sintering, there is no change in density of the samples including reinforcing elements (ZrSiO4). With increasing friction surface temperature, a reduction in the friction coefficient of the samples was observed. However, the highest reductions in the friction coefficients were observed in the as-received samples containing 0. 5% reinforced ZrSiO4. The SEM images of the sample indicated that while bronze-based break lining material without ZrSiO4 showed abrasive wear behaviour, increasing the amount of ZrSiO4 resulted a change in abrasive to adhesive wear mechanism. All samples exhibited friction-wear values, which were within the values shown in SAE-J661 standard. With increasing the amount of reinforcing ZrSiO4, wear resistance of the samples was increased. However samples reinforced with 5% and 6% ZrSiO4 showed the best results. 展开更多
关键词 friction materials ZRSIO4 WEAR friction Brake lining
下载PDF
Copper-Free Resin-Based Braking Materials:A New Approach for Substituting Copper with Fly-Ash Cenospheres in Composites
9
作者 Kaikui Zheng Youxi Lin +2 位作者 Shanmin You Zhiying Ren Jianmeng Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期401-412,共12页
Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials with... Copper particles emitted from braking have become a significant source of environmental pollution.However,copper plays a crucial role in resin-based braking materials.Developing high-performance braking materials without copper has become a significant challenge.In this paper,the resin-based braking materials were filled with flyash cenospheres to develop copper-free braking materials.The effects of fly-ash cenospheres on the physical properties,mechanical and friction and wear properties of braking materials were studied.Furthermore,the wear mechanism of copper-free resin-based braking materials filled with fly-ash cenospheres was discussed.The results indicate that the inclusion of fly-ash cenospheres in the braking materials improved their thermal stability,hardness and impact strength,reduced their density,effectively increased the friction coefficient at medium and high temperatures,and enhanced the heat-fade resistance of the braking materials.The inclusion of fly-ash cenospheres contributed to the formation of surface friction film during the friction process of the braking materials,and facilitated the transition of form from abrasive wear to adhesive wear.At 100-350℃,the friction coefficient of the optimal formulation is in the range of 0.57-0.61,and the wear rate is in the range(0.29-0.65)×10^(-7) cm^(3)·N^(-1)·m^(-1),demonstrating excellent resistance to heat-fade and stability in friction coefficient.This research proposes the use of fly-ash cenospheres as a substitute for environmentally harmful and expensive copper in brake materials,which not only improves the performance of braking materials but also reduces their costs. 展开更多
关键词 Fly-ash cenospheres Braking materials friction and wear Heat-fade resistance Wear form
下载PDF
The Dynamic Tribological Performance of One Certain Resin-based Friction Materials under Different Temperature Conditions 被引量:1
10
作者 SUN Weitao ZHOU Wenlong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第4期845-850,共6页
A fixed-point observation method was designed to research the dynamic tribological performance of one certain resin-based friction materials. The friction test was performed through a constant speed friction tester un... A fixed-point observation method was designed to research the dynamic tribological performance of one certain resin-based friction materials. The friction test was performed through a constant speed friction tester under various temperature conditions. It was found that the dynamic tribological performance of materials has a good consistency with the dynamic evolution of worn surfaces. At lower temperatures, the friction coefficient and wear rate were constant, resulted from the stable worn surfaces. At higher temperatures, the friction coefficient increased gradually, while the wear rate decreased, due to the increasing contact area and Fe concentration. A fade occurred above 250 ℃, which can be explained by the degradation of binders. 展开更多
关键词 resin-based friction materials DYNAMIC TRIBOLOGICAL performance worn SURFACES
下载PDF
Effect of zinc powder content on tribological behaviors of brake friction materials 被引量:3
11
作者 Yang YANG Lu-xin LIANG +3 位作者 Hong WU Bo-wei LIU Hui QU Qi-hong FANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第11期3078-3092,共15页
Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conduc... Brake friction materials with different zinc powder contents(0,2,4,6,8 wt.%)were fabricated via powder metallurgy method.The results indicate that with the increasing zinc powder content,the density and thermal conductivity of the materials gradually increase,while the hardness decreases monotonously.With increasing zinc powder content,the curve of the nominal friction coefficient shows fluctuating trend but the lowest friction coefficient also shows an increase.However,the wear rate and braking noise of the friction material monotonously decrease with increasing zinc content.This effect may be attributed to the transformation of the tribological mechanism from adhesive wear and abrasive wear to adhesive wear.The brake friction material with 4 wt.%zinc powder exhibits both the best tribological and noise performance. 展开更多
关键词 zinc powder content brake friction material tribological behavior braking noise
下载PDF
3D modeling for effect of tool eccentricity on coupled thermal and material flow characteristics during friction stir welding
12
作者 Hao SU Ji CHEN Chuan-song WU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3309-3325,共17页
A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical bound... A novel three-dimensional numerical model is proposed to investigate the effect of tool eccentricity on the coupled thermal and material flow characteristics in friction stir welding(FSW) process.An asymmetrical boundary condition at the tool-workpiece interface,and the dynamic mesh technique are both employed for the consideration of the tool eccentricity during tool rotating.It is found that tool eccentricity induces the periodical variation of the heat densities both at the tool-workpiece interface and inside the shear layer,but the fluctuation amplitudes of the heat density variations are limited.However,it is demonstrated that tool eccentricity results in significant variation of the material flow behavior in one tool rotating period.Moreover,the material velocity variation at the retreating side is particularly important for the formation of the periodic characteristics in FSW.The modeling result is found to be in good agreement with the experimental one. 展开更多
关键词 friction stir welding tool eccentricity thermal behavior periodic material flow numerical simulation
下载PDF
Microstructure and frictional properties of 3D needled C/SiC brake materials modified with graphite 被引量:3
13
作者 张建新 范尚武 +3 位作者 张立同 成来飞 杨尚杰 田广来 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第12期2289-2293,共5页
The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and fri... The 3D needled C/SiC brake materials modified with graphite were prepared by a combined process of the chemical vapor infiltration,slurry infiltration and liquid silicon infiltration process.The microstructure and frictional properties of the brake materials were investigated.The density and open porosity of the materials as-received were about(2.1±0.1)g/cm3and(5±1)%,respectively.The brake materials were composed of 59%C,39%SiC,and 2%Si(mass fraction).The content of Si in the C/SiC brake materials modified with graphite was far less than that in the C/SiC brake materials without being modified with graphite,and the Si was dispersed.The braking curve of the 3D needled C/SiC modified with graphite was smooth,which can ensure the smooth and comfortable braking.The frictional properties under wet condition of the 3D needled C/SiC modified with graphite showed no fading.And the linear wear rate of the C/SiC modified with graphite was lower than that of the C/SiC unmodified. 展开更多
关键词 3D needled C/SiC brake material MICROSTRUCTURE frictional properties
下载PDF
Effect of Friction Reclaimed Materials of Waste Brake-shoe on Basic Performance of Mortar 被引量:3
14
作者 王彩辉 HUANG Dongjie +4 位作者 FU Hua WU Hongya QIN Guoqiang SUN Guowen GUO Na 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期603-610,共8页
Discarded train brake shoes mainly consist of steel-backed friction material. To be better reutilized, its essential features and its interaction in cement-based material need to be studied. Consequently, particle siz... Discarded train brake shoes mainly consist of steel-backed friction material. To be better reutilized, its essential features and its interaction in cement-based material need to be studied. Consequently, particle size analysis, SEM, IR and TGA were used to investigate two types of waste brake shoes, i e, mechanical grinding friction reclaimed material of waste brake-shoe(G-FRMWBS) and pyrolysis-friction reclaimed materials of waste brake-shoe(P-FRMWBS). The latter exhibited less organic content, larger range of particle size distribution and smaller medium particle diameter. Both types contained inorganic particles of spherical and irregular shapes, striped with steel fiber. Upon isometric substituting fine aggregates, G-FRMWBS lifted the strength of mortar effectively that was increased by 16.6% and 17.5% when the replacing rate was 5%; the value went up to 19.2% and 19.2% when the replacing rate was 10%. Moreover, inclusion of FRMWBS enhanced the chloride penetration resistance, and optimized the pore characteristic and ITZ(interfacial transition zone) as well. 展开更多
关键词 friction reclaimed materials of waste brake-shoe mortar strength porosity ITZ
下载PDF
Frictionally excited thermoelastic dynamic instability of functionally graded materials 被引量:1
15
作者 J.Liu L.L.Ke Y.S.Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2019年第1期99-111,I0004,共14页
The perturbation method is applied to investigate the frictionally excited thermoelastic dynamic instability (TEDI) of a functionally graded material (FGM) coating in half-plane sliding against a homogeneous half-plan... The perturbation method is applied to investigate the frictionally excited thermoelastic dynamic instability (TEDI) of a functionally graded material (FGM) coating in half-plane sliding against a homogeneous half-plane. We assume that the thermoelastic properties of the FGM vary exponentially with thickness. We also examine the effects of the gradient index, sliding speed, and friction coefficient on the TEDI for various material combinations. The transverse normal stress for two different coating structures is calculated. Furthermore, the frictional sliding stability of two different coating structures is analyzed. The obtained results show that use of FGM coatings can improve the TEDI of this sliding system and reduce the possibility of interfacial failure by controlling the interfacial tensile stress. 展开更多
关键词 THERMOELASTIC dynamic INSTABILITY frictional HEAT Functionally GRADED materials STRESS analysis
下载PDF
Development of processing windows for friction stir spot welding of aluminium Al5052/copper C27200 dissimilar materials 被引量:1
16
作者 S. SIDDHARTH T.SENTHILKUMAR M.CHANDRASEKAR 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第6期1273-1284,共12页
Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool... Friction stir spot welding technique was used to join dissimilar combinations of aluminium alloy(Al5052)with copperalloy(C27200)and friction stir spot welding windows such as tool rotational speed–dwell time and tool rotational speed?plungedepth diagrams for effective joining of these materials were developed.Using a central composite design model,empirical relationswere developed to predict the changes in tensile shear failure load values and interface hardness of the joints with three processparameters such as tool rotational speed,plunge depth and dwell time.The adequacy of the developed model was verified usingANOVA analysis at95%confidence level.Response surface methodology was used to optimize the developed model to maximizetensile strength and minimize interface hardness.A high tensile shear failure load value of3850N and low interface hardness valueof HV81was observed for joints made under optimum conditions,and validation experiments confirmed the high predictability ofthe developed model with error less than2%.The operating windows developed shall act as reference maps for future designengineers in choosing appropriate friction stir spot welding process parameter values to obtain good joints. 展开更多
关键词 friction stir spot welding dissimilar materials aluminium COPPER processing windows response surface methodology
下载PDF
Design and manufacture of intelligent Cu-based wet friction materials 被引量:2
17
作者 丁华东 韩文政 +2 位作者 傅苏黎 杜建华 遇元宏 《中国有色金属学会会刊:英文版》 CSCD 2004年第5期864-869,共6页
The friction sheets working process was analyzed. It is found that its characteristic is microregion instantaneous high temperature and the current cooling method, making the sheets cooled by the lubricating oil flowi... The friction sheets working process was analyzed. It is found that its characteristic is microregion instantaneous high temperature and the current cooling method, making the sheets cooled by the lubricating oil flowing through the friction surface, is not very efficient. Then, intelligent materials concept was introduced, the component and microstructure of intelligent Cu-based friction materials were designed, and the intelligent Cu-based wet friction materials as well as sheets were manufactured. And the intelligent friction materials working principle, i.e. the materials cooling the friction microregion in real time or the friction sheets cutting the peak value of microregion instantaneous high temperature during friction process, was given depending on the characteristics of the materials’ and friction sheets’ working process. Finally, it is indicated that the intelligent friction sheets excell the currently used friction sheets in properties, including anti-heating property, anti-wearing property as well as friction characteristic. 展开更多
关键词 智能金属 汽车 齿轮箱 摩擦片 铜基合金
下载PDF
Study on Interface Friction Model for Engineering Materials Testing on Split Hopkinson Pressure Bar Tests 被引量:1
18
作者 Yubin Lu Songyan Zhang 《Modern Mechanical Engineering》 2013年第1期27-33,共7页
Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test... Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test is based on the assumption of uniaxial and uniform stress distribution within the specimen, which, however, is not always satisfied in an actual SHPB test due to the existence of some unavoidable negative factors, e.g., interface friction constrains. Kinetic interface friction tests based on a simple device for engineering materials testing on SHPB tests are performed. A kinetic interface friction model is proposed and validated by implementing it into a numerical model. It shows that the proposed simple device is sufficient to obtain kinetic interface friction results for common SHPB tests. The kinetic friction model should be used instead of the frequently used constant friction model for more accurate numerical simulation of SHPB tests. 展开更多
关键词 KINETIC INTERFACE friction Model SLIDING Velocity Contact SPLIT Hopkinson Pressure Bar (SHPB) ENGINEERING materials
下载PDF
Preparation and Characterization of Semi-Metal Friction Materials Doping Rare Earths
19
作者 许越 白婧 谢继亮 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期364-368,共5页
In order to study the effects of preparation process on the performance and microstructure of the materials, semi-metal friction materials doping rare earths were produced. Different influencing factors in preparation... In order to study the effects of preparation process on the performance and microstructure of the materials, semi-metal friction materials doping rare earths were produced. Different influencing factors in preparation processes (forming pressure, hot-pressing temperature, etc.) were investigated and the optimum technological parameters were selected. The results showed that preparation processes has correlation with the properties of the materials. The morphology of worn surface was observed by scanning electronic microscope, and the conclusion was drawn that wear mechanisms of the materials were mainly abrasive wear, adhesive wear and fatigue wear. Doping RE in the materials can improve the interfacial bonding among the components of semi-metal friction materials and make the structure of the materials more impact. 展开更多
关键词 friction materials preparation process friction and wear MECHANISM rare earths
下载PDF
Effects of Rare Earths on Properties and Microstructure of Automotive Friction Materials
20
作者 许越 卢立国 白婧 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期94-97,共4页
Rare earth compounds as modifiers used widely in modern friction materials can enhance the interfacial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, the... Rare earth compounds as modifiers used widely in modern friction materials can enhance the interfacial binding of constituents of materials and improve the comprehensive properties of materials evidently. However, there are still few reports on application of rare earth in automotive friction materials. In order to study the effect mechanism of rare earths in friction materials, a rare earth compound was selected as additive and the effects of materials doped with or without rare earth on friction and wear properties of materials were studied. The microstructure and worn surface morphology were observed by scanning electron microscopy and the macro performance was discussed. Worn surface element constitution of materials was analyzed by energy dispersive spectroscopy. Effect mechanism of rare earths on friction and wear behaviors of friction materials were discussed. The results show that doping rare earths in friction materials can stabilize friction coefficient, lower the wear rate of materials and increase the impact strength of materials. The flexibility and fracture resistance of materials is greatly improved. Worn surface of materials doped with rare earth is compact and the surface adhesion is greatly enhanced. 展开更多
关键词 friction materials PROPERTIES MICROSTRUCTURE effect mechanism rare earths
下载PDF
上一页 1 2 129 下一页 到第
使用帮助 返回顶部