To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.Th...To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.展开更多
Copper composites reinforced with diamond particles were fabricated by the powder metallurgical technique. Copper matrix and diamond powders were mixed mechanically, cold com- pacted at 100 bar then sintered at 900?C....Copper composites reinforced with diamond particles were fabricated by the powder metallurgical technique. Copper matrix and diamond powders were mixed mechanically, cold com- pacted at 100 bar then sintered at 900?C. The prepared powders and sintered copper/diamond composites were investigated using X-ray diffraction (XRD) and scanning electron microscope equipped with an energy dispersive X-ray analysis (SEM/EDS). The effect of diamond contents in the Cu/diamond composite on the different properties of the composite was studied. On fracture surfaces of the Cu/uncoated diamond composites, it was found that there is a very weak bonding between diamonds and pure copper matrix. In order to improve the bonding strength between copper and the reinforcement, diamond particles were electroless coated with NiWB alloy. The results show that coated diamond particles distribute uniformly in copper composite and the interface between diamond particles and Cu matrix is clear and well bonded due to the formation of a thin layer from WB2, Ni3B, and BC2 between Cu and diamond interfaces. The properties of the composites materials using coated powder, such as hardness, transverse rupture strength, thermal conductivity, and coefficient of thermal expansion (CTE) were exhibit greater values than that of the composites using uncoated diamond powder. Additionally, the results reveals that the maximum diamond incorporation was attained at 20 Vf%. Actually, Cu/20 Vf% coated diamond com- posite yields a high thermal conductivity of 430 W/mK along with a low coefficient of thermal expansion (CTE) 6 × 10–6/K.展开更多
Thermal properties of AlN-Si-Al composites produced by pressureless melt infiltration of Al/Al alloys into porous a-Si3N4 preforms were investigated in a temperature range of 50-300 °C. SEM and TEM investigations...Thermal properties of AlN-Si-Al composites produced by pressureless melt infiltration of Al/Al alloys into porous a-Si3N4 preforms were investigated in a temperature range of 50-300 °C. SEM and TEM investigations revealed that the grain size of AlN particles was less than 1 μm. In spite of sub-micron grain size, composites showed relatively high thermal conductivity (TC), 55-107 W/(m·K). The thermal expansion coefficient (CTE) of the composite produced with commercial Al source, which has the highest TC of 107 W/(m·K), was 6.5×10-6 K-1. Despite the high CTE of Al (23.6×10-6 K-1), composites revealed significantly low CTE through the formation of Si and AlN phases during the infiltration process.展开更多
To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method...To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.展开更多
The non-linear behavior of continuous fiber reinforced C/SiC ceramic matrix composites(CMCs)under tensile loading is modeled by three-dimensional representative volume element(RVE)models of the composite. The theoreti...The non-linear behavior of continuous fiber reinforced C/SiC ceramic matrix composites(CMCs)under tensile loading is modeled by three-dimensional representative volume element(RVE)models of the composite. The theoretical background of the multi-scale approach solved by the finite element method(FEM)is recalled firstly.Then the geometric characters of three kinds of damage mechanisms,i.e.micro matrix cracks,fiber/matrix interface debonding and fiber fracture,are studied.Three kinds of RVE are proposed to model the microstructure of C/SiC with above damage mechanisms respectively.The matrix cracking is modeled by critical matrix strain energy(CMSE)principle while a maximum shear stress criterion is used for modeling fiber/matrix interface debonding. The behavior of fiber fracture is modeled by the famous Weibull statistic theory.A numerical example of continuous fiber reinforced C/SiC composite under tensile loading is performed.The results show that the stress/strain curve predicted by the developed model agrees with experimental data.展开更多
Silver nanoparticles were synthesized by chemical reduction method. The Ag nanoparticles (AgNP) were characterized using UV-Vis spectroscopy which shows an absorption band at 420 nm confirming the formation of nanopar...Silver nanoparticles were synthesized by chemical reduction method. The Ag nanoparticles (AgNP) were characterized using UV-Vis spectroscopy which shows an absorption band at 420 nm confirming the formation of nanoparticles. For any practical application of the silver nanoparticles it is necessary to stabilize it which can be done by making a composite. In the present studies three polymers were chosen such that AgNP could be put to some practical use. Polyvinyl Alcohol (PVA), Polypyrrole (Ppy) and Carboxymethyl cellulose (CMC) are important for use in textiles, electronics and food/drug technologies respectively. Polymeric composites of PVA, PPy, and CMC were prepared by mixing the aqueous solutions of the respective polymers and the colloidal suspension of preformed silver nanoparticles. Various compositions containing 1% to 5% of Ag nanoparticles were prepared. Thin films of these composites were characterized by UV-Vis spectroscopy, X-ray diffraction and Scanning electron microscopy. X-ray diffraction showed the presence of the peaks at 2θ values of 38.1°, 44.2°, 64.4 and 78.2° corresponding to cubic phase of silver metal. SEM photographs revealed the presence of Ag nanoparticles of sizes varying from 40 to 80 nm. The electrical conductivity of these materials was studied using the four probe method. The conductivity was found to increase from 10–6 for control samples to 10–3 S/cm after the formation of the nanocomposites.展开更多
Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon...Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.展开更多
SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promote...SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promoters, will encompasses the early heating of the alloy ingot, melting and continued heating to temperature in the narrow range of 950°C to 980°C in an atmosphere of oxygen. Varying interlayers (dopents) are incorporated to examine the growth conditions of the composite materials and to identification of suitable growth promoter. The process is extremely difficult because molten aluminum does not oxidize after prolonged duration at high temperatures due to the formation of a passivating oxide layer. It is known that the Lanxide Corporation had used a combination of dopents to cause the growth of alumina from molten metal. This growth was directed, i.e. the growth is allowed only in the required direction and restricted in the other directions. The react nature of the dopants was a trade secret. Though it is roughly known that Mg and Si in the Al melt can aid growth, additional dopents used, the temperatures at which the process was carried out, the experimental configurations that aided directed growth were not precisely known. In this paper we have evaluated the conditions in which composites can be grown in large enough sizes for evaluation application and have arrived at a procedure that enables the fabrication of large composite samples by determining the suitable growth promoter (dopant). Scanning electron microscopic, EDS analysis of the composite was found to contain a continuous network of Al2O3, which was predominantly free of grain-boundary phases, a continuous network of Al alloy. Fabrication of large enough samples was done only by the inventor company and the property measurements by the company were confirmed to those needed to enable immediate applications. Since there are a large number of variable affecting robust growth of the composite, fabrication large sized samples for measurements is a difficult task. In the present work, to identify a suitable window of parameters that enables robust growth of the composite has been attempted.展开更多
In this paper,Si coatings were sprayed onto C/SiC composite substrates by atmospheric plasma spraying(APS).The high-temperature oxidation behavior of the substrate and coating at temperatures of 1100 and 1300℃was als...In this paper,Si coatings were sprayed onto C/SiC composite substrates by atmospheric plasma spraying(APS).The high-temperature oxidation behavior of the substrate and coating at temperatures of 1100 and 1300℃was also studied.The C/SiC ceramic matrix composite will be damaged seriously and even failed due to the oxidation of carbon fibers in matrix.The Si coating effectively improved the oxidation resistance of the C/SiC substrate in the high-temperature oxidation test.The effect of the thickness of the Si coatings on the oxidation resistance was investigated.The 150-μm coating is proved to enable the substrate to have the lowest oxidation weight loss and the best oxidation resistance after static oxidation for 5 h.展开更多
The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length...The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively.展开更多
基金supported by the National Natural Science Foundation of China(No.U19A2099)the Open Fund for Hubei Provincial Key Laboratory of Advanced Aerospace Power Technology,China(No.DLJJ2103007)the Hunan Graduate Research Innovation Project,China(No.CX20220097)。
文摘To obtain high-performance Zr-based ultra-high-temperature composites,Zr-based ultra-high-temperature gradient composites were prepared by changing the laying method of the infiltrant via reactive melt infiltration.The effects of different infiltrant laying methods on the microstructure and ablative properties of Zr-based ultrahigh-temperature gradient composites were investigated.The results showed that the gradient structure of the Zr-based ultrahigh-temperature gradient composites differed when the composition ratio of the infiltrant was changed.When the thicknesses of the Zr/Mo/Si layers were 6/4/12 mm and 8/2/12 mm,the SiMoZrC solid solution content in the samples increased and decreased along the infiltration direction,respectively.The gradient samples were ablated in an oxyacetylene flame at 3000°C for 40 s.The ablation resistance of the sample was the highest when the infiltrant was a powder and the thickness of the Zr/Mo/Si layer was 6/4/12 mm.
文摘Copper composites reinforced with diamond particles were fabricated by the powder metallurgical technique. Copper matrix and diamond powders were mixed mechanically, cold com- pacted at 100 bar then sintered at 900?C. The prepared powders and sintered copper/diamond composites were investigated using X-ray diffraction (XRD) and scanning electron microscope equipped with an energy dispersive X-ray analysis (SEM/EDS). The effect of diamond contents in the Cu/diamond composite on the different properties of the composite was studied. On fracture surfaces of the Cu/uncoated diamond composites, it was found that there is a very weak bonding between diamonds and pure copper matrix. In order to improve the bonding strength between copper and the reinforcement, diamond particles were electroless coated with NiWB alloy. The results show that coated diamond particles distribute uniformly in copper composite and the interface between diamond particles and Cu matrix is clear and well bonded due to the formation of a thin layer from WB2, Ni3B, and BC2 between Cu and diamond interfaces. The properties of the composites materials using coated powder, such as hardness, transverse rupture strength, thermal conductivity, and coefficient of thermal expansion (CTE) were exhibit greater values than that of the composites using uncoated diamond powder. Additionally, the results reveals that the maximum diamond incorporation was attained at 20 Vf%. Actually, Cu/20 Vf% coated diamond com- posite yields a high thermal conductivity of 430 W/mK along with a low coefficient of thermal expansion (CTE) 6 × 10–6/K.
基金The Foundation for Scientific Research Projects of Mugla Sitki Kocman University(Project No.10/30)The Scientific&Technological Research Council of Turkey(TUBITAK,Project No:108M194)for funding the present work
文摘Thermal properties of AlN-Si-Al composites produced by pressureless melt infiltration of Al/Al alloys into porous a-Si3N4 preforms were investigated in a temperature range of 50-300 °C. SEM and TEM investigations revealed that the grain size of AlN particles was less than 1 μm. In spite of sub-micron grain size, composites showed relatively high thermal conductivity (TC), 55-107 W/(m·K). The thermal expansion coefficient (CTE) of the composite produced with commercial Al source, which has the highest TC of 107 W/(m·K), was 6.5×10-6 K-1. Despite the high CTE of Al (23.6×10-6 K-1), composites revealed significantly low CTE through the formation of Si and AlN phases during the infiltration process.
基金supported by the National Natural Science Foundation of China(No.U19A2099)the CAS Key Laboratory of Carbon Materials,China(No.KLCMKFJJ2005)the Fund of Aerospace Research Institute of Material and Processing Technology,China(No.6142906200108).
文摘To investigate the thermal stability of ceramic-matrix composites,three kinds of C/C−ZrC−SiC composites with different Zr/Si molar ratios were synthesized by reactive melt infiltration.Employing region labeling method,the high-temperature thermal stability of the composites was systematically studied by changing the temperature and holding time of thermal treatment.Results show that the mass loss rate of low Si composites has a growth trend with increasing temperature,and a crystal transformation from β-SiC toα-SiC occurs in the composites.In the calibrated area,SiC phase experiences Ostwald ripening and volume change with location migration,while ZrC phase experiences a re-sintering process with diffusion.Moreover,it is found that increasing temperature has a more obvious effect on the thermal stability than extending holding time,which is mainly attributed to the faster diffusion rate of atoms.
基金Supported by the National Natural Science Foundation of China(51075204,51105195)the Aeronau-tical Science Foundation of China(2011ZB52024)
文摘The non-linear behavior of continuous fiber reinforced C/SiC ceramic matrix composites(CMCs)under tensile loading is modeled by three-dimensional representative volume element(RVE)models of the composite. The theoretical background of the multi-scale approach solved by the finite element method(FEM)is recalled firstly.Then the geometric characters of three kinds of damage mechanisms,i.e.micro matrix cracks,fiber/matrix interface debonding and fiber fracture,are studied.Three kinds of RVE are proposed to model the microstructure of C/SiC with above damage mechanisms respectively.The matrix cracking is modeled by critical matrix strain energy(CMSE)principle while a maximum shear stress criterion is used for modeling fiber/matrix interface debonding. The behavior of fiber fracture is modeled by the famous Weibull statistic theory.A numerical example of continuous fiber reinforced C/SiC composite under tensile loading is performed.The results show that the stress/strain curve predicted by the developed model agrees with experimental data.
文摘Silver nanoparticles were synthesized by chemical reduction method. The Ag nanoparticles (AgNP) were characterized using UV-Vis spectroscopy which shows an absorption band at 420 nm confirming the formation of nanoparticles. For any practical application of the silver nanoparticles it is necessary to stabilize it which can be done by making a composite. In the present studies three polymers were chosen such that AgNP could be put to some practical use. Polyvinyl Alcohol (PVA), Polypyrrole (Ppy) and Carboxymethyl cellulose (CMC) are important for use in textiles, electronics and food/drug technologies respectively. Polymeric composites of PVA, PPy, and CMC were prepared by mixing the aqueous solutions of the respective polymers and the colloidal suspension of preformed silver nanoparticles. Various compositions containing 1% to 5% of Ag nanoparticles were prepared. Thin films of these composites were characterized by UV-Vis spectroscopy, X-ray diffraction and Scanning electron microscopy. X-ray diffraction showed the presence of the peaks at 2θ values of 38.1°, 44.2°, 64.4 and 78.2° corresponding to cubic phase of silver metal. SEM photographs revealed the presence of Ag nanoparticles of sizes varying from 40 to 80 nm. The electrical conductivity of these materials was studied using the four probe method. The conductivity was found to increase from 10–6 for control samples to 10–3 S/cm after the formation of the nanocomposites.
基金the Natural Science Fundation of Guangxi Province(No.0575104)the Guangxi Education Department Key Fund(No.2003-22)+1 种基金the Guangxi Fund of New Century Qualified Scholars(No.2002210)the National Science Foundation(No.50672016)
文摘Fe-Al intermetallic/TiC-Al2O3 ceramic composites were successfully prepared by selfpropagating high-temperature synthesis (SHS) from natural ilmenite, aluminium and carbon as the raw materials. The effects of carbon sources, preheating time and heat treatment temperature on synthesis process and products were investigated in detail, and the reaction process of the FeTiO3-Al-C system was also discussed. It is shown that the temperature and velocity of the combustion wave are higher when graphite is used as the carbon source, which can reflect the effect of the carbon source structure on the combustion synthesis; Prolonging the preheating time or heat treatment temperature is beneficial to the formation of the ordered intermetallics; The temperature and velocity of the combustion wave are improved, but the disordered alloys are difficult to eliminate with the preheating time prolonged. The compound powders mainly containing ordered Fe3Al intermetallic can be prepared through heat treatment at 750 ℃.
文摘SiC particulates reinforced alumina matrix composites were fabricated using Directed Metal Oxidation (DIMOX) process. Continuous oxidation of an Al-Si-Mg-Zn alloy with different interlayers (dopents) as growth promoters, will encompasses the early heating of the alloy ingot, melting and continued heating to temperature in the narrow range of 950°C to 980°C in an atmosphere of oxygen. Varying interlayers (dopents) are incorporated to examine the growth conditions of the composite materials and to identification of suitable growth promoter. The process is extremely difficult because molten aluminum does not oxidize after prolonged duration at high temperatures due to the formation of a passivating oxide layer. It is known that the Lanxide Corporation had used a combination of dopents to cause the growth of alumina from molten metal. This growth was directed, i.e. the growth is allowed only in the required direction and restricted in the other directions. The react nature of the dopants was a trade secret. Though it is roughly known that Mg and Si in the Al melt can aid growth, additional dopents used, the temperatures at which the process was carried out, the experimental configurations that aided directed growth were not precisely known. In this paper we have evaluated the conditions in which composites can be grown in large enough sizes for evaluation application and have arrived at a procedure that enables the fabrication of large composite samples by determining the suitable growth promoter (dopant). Scanning electron microscopic, EDS analysis of the composite was found to contain a continuous network of Al2O3, which was predominantly free of grain-boundary phases, a continuous network of Al alloy. Fabrication of large enough samples was done only by the inventor company and the property measurements by the company were confirmed to those needed to enable immediate applications. Since there are a large number of variable affecting robust growth of the composite, fabrication large sized samples for measurements is a difficult task. In the present work, to identify a suitable window of parameters that enables robust growth of the composite has been attempted.
基金supported by the National Natural Science Foundations of China(Nos.51590894,51425102 and 51231001)。
文摘In this paper,Si coatings were sprayed onto C/SiC composite substrates by atmospheric plasma spraying(APS).The high-temperature oxidation behavior of the substrate and coating at temperatures of 1100 and 1300℃was also studied.The C/SiC ceramic matrix composite will be damaged seriously and even failed due to the oxidation of carbon fibers in matrix.The Si coating effectively improved the oxidation resistance of the C/SiC substrate in the high-temperature oxidation test.The effect of the thickness of the Si coatings on the oxidation resistance was investigated.The 150-μm coating is proved to enable the substrate to have the lowest oxidation weight loss and the best oxidation resistance after static oxidation for 5 h.
基金supported by the National Natural Science Foundation of China (No. 90405015)the Research Fund forthe Doctoral Program of Higher Education (No. 20030699040).
文摘The effect of through-thickness reinforcement by composite pins (Z-pins) on the static tensile strength and failure mechanisms of the joints made from ceramic matrix composite (CMC) is investigated. Overlap length of the single lap joint is 15 mm, 20 mm, 23 mm, 37 mm, and 60 mm, respectively. The experimental results indicate that the final failure modes of the joints can be divided into two groups, (a) the bond-line stops debonding until crack encounters Z-pins; and then the adherends break at the location of Z-pins, when overlap length is more than 20 mm; (b) the bond-line detaches entirely and Z-pins are drawn from adherends, when overlap length is equal to 15 mm. A simple efficient computational approach is presented for analyzing the benefit of through-thickness pins for restricting failure in the single lap joints. Here, the mechanics problem is simplified by representing the effect of the pins by tractions acting on the fracture surfaces of the cracked bond-line. The tractions are prescribed as functions of the crack displacement, which are available in simple forms that summarize the complex deformations to a reasonable accuracy. The resulting model can be used to track the evolution of complete failure mechanisms, for example, bond-line initial delamination and ultimate failure associated with Z-pin pullout, ultimate failure of the adherends. The paper simulates connecting performance of the single lap joints with different Z-pins' diameter, spacing and overlap length; the numerical results agree with the experimental results; the numerical results indicate enlarging diameter and decreasing spacing of Z-pins are in favor of improving the connecting performance of the joints. By numerical analysis method, the critical overlap length that lies between two final failure modes is between 18 mm and 19 mm, when Z-pins' diameter and spacing are 0.4 mm, 5 mm, respectively.