期刊文献+
共找到3,518篇文章
< 1 2 176 >
每页显示 20 50 100
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
1
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 Metal matrix composites powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
下载PDF
In-situ additive manufacturing of high strength yet ductility titanium composites with gradient layered structure using N_(2)
2
作者 Yunmian Xiao Changhui Song +4 位作者 Zibin Liu Linqing Liu Hanxiang Zhou Di Wang Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期387-409,共23页
It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites incl... It has always been challenging work to reconcile the contradiction between the strength and plasticity of titanium materials.Laser powder bed fusion(LPBF) is a convenient method to fabricate innovative composites including those inspired by gradient layered materials.In this work,we used LPBF to selectively prepare Ti N/Ti gradient layered structure(GLSTi)composites by using different N_(2)–Ar ratios during the LPBF process.We systematically investigated the mechanisms of in-situ synthesis Ti N,high strength and ductility of GLSTi composites using microscopic analysis,TEM characterization,and tensile testing with digital image correlation.Besides,a digital correspondence was established between the N_(2) concentration and the volume fraction of LPBF in-situ synthesized Ti N.Our results show that the GLSTi composites exhibit superior mechanical properties compared to pure titanium fabricated by LPBF under pure Ar.Specifically,the tensile strength of GLSTi was more than 1.5times higher than that of LPBF-formed pure titanium,reaching up to 1100 MPa,while maintaining a high elongation at fracture of 17%.GLSTi breaks the bottleneck of high strength but low ductility exhibited by conventional nanoceramic particle-strengthened titanium matrix composites,and the hetero-deformation induced strengthening effect formed by the Ti N/Ti layered structure explained its strength-plasticity balanced principle.The microhardness exhibits a jagged variation of the relatively low hardness of 245 HV0.2 for the pure titanium layer and a high hardness of 408 HV0.2 for the N_(2) in-situ synthesis layer.Our study provides a new concept for the structure-performance digital customization of 3D-printed Ti-based composites. 展开更多
关键词 laser powder bed fusion layered structure composites in-situ synthesis TiN strength-plasticity synergy
下载PDF
Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy:preparation, performance, and mechanisms 被引量:2
3
作者 Yi-Fan Yan Shu-Qing Kou +4 位作者 Hong-Yu Yang Shi-Li Shu Feng Qiu Qi-Chuan Jiang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期200-234,共35页
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e... Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields. 展开更多
关键词 copper matrix composites advanced powder metallurgy model prediction particle characteristics strengthening mechanism
下载PDF
Functionally graded structure of a nitride-strengthened Mg_(2)Si-based hybrid composite
4
作者 Jeongho Yang Woongbeom Heogh +15 位作者 Hogi Ju Sukhyun Kang Tae-Sik Jang Hyun-Do Jung Mohammad Jahazi Seung Chul Han Seong Je Park Hyoung Seop Kim Susmita Bose Amit Bandyopadhyay Martin Byung-Guk Jun Young Won Kim Dae-kyeom Kim Rigoberto CAdvincula Clodualdo Aranas Jr Sang Hoon Kim 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1239-1256,共18页
The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in orde... The ex-situ incorporation of the secondary SiC reinforcement,along with the in-situ incorporation of the tertiary and quaternary Mg_(3)N_(2) and Si_(3)N_(4) phases,in the primary matrix of Mg_(2)Si is employed in order to provide ultimate wear resistance based on the laser-irradiation-induced inclusion of N_(2) gas during laser powder bed fusion.This is substantialized based on both the thermal diffusion-and chemical reactionbased metallurgy of the Mg_(2)Si–SiC/nitride hybrid composite.This study also proposes a functional platform for systematically modulating a functionally graded structure and modeling build-direction-dependent architectonics during additive manufacturing.This strategy enables the development of a compositional gradient from the center to the edge of each melt pool of the Mg_(2)Si–SiC/nitride hybrid composite.Consequently,the coefficient of friction of the hybrid composite exhibits a 309.3%decrease to–1.67 compared to–0.54 for the conventional nonreinforced Mg_(2)Si structure,while the tensile strength exhibits a 171.3%increase to 831.5 MPa compared to 485.3 MPa for the conventional structure.This outstanding mechanical behavior is due to the(1)the complementary and synergistic reinforcement effects of the SiC and nitride compounds,each of which possesses an intrinsically high hardness,and(2)the strong adhesion of these compounds to the Mg_(2)Si matrix despite their small sizes and low concentrations. 展开更多
关键词 Laser powder bed fusion Mg_(2)Si-SiC/nitride hybrid composite Both the thermal diffusion-and chemical reaction-based metallurgy Functionally graded structure compositional gradient Wear resistance.
下载PDF
Preparation of ZrB_(2)-ZrO_(2)-SiC Composite Powder by Carbothermal Reduction from Zircon
5
作者 TIAN Xuekun ZHOU Chaojie +4 位作者 ZHANG Lei ZHAO Fei JIA Quanli LIU Xinhong ZHONG Xiangchong 《China's Refractories》 CAS 2023年第1期25-29,共5页
Using zircon,boric acid and carbon black as starting materials,ZrB_(2)-ZrO_(2)-SiC composite powder was synthesized by calcining at 1500℃in flowing argon atmosphere.The effects of the soaking time(3,6 and 9 h)and the... Using zircon,boric acid and carbon black as starting materials,ZrB_(2)-ZrO_(2)-SiC composite powder was synthesized by calcining at 1500℃in flowing argon atmosphere.The effects of the soaking time(3,6 and 9 h)and the addition of additive AlF_(3)(0,0.5%,1.0%,1.5%,2.0%and 2.5%,by mass)on the phase composition and the microstructure of the synthesized products were investigated.The results show that:(1)ZrB_(2)-ZrO_(2)-SiC composite powder can be synthesized by carbothermal reduction at 1500℃in flowing argon atmosphere;ZrB_(2) and ZrO_(2) are granular-like,and SiC crystals are fiberous;(2)with the soaking time increasing,the amount of ZrB_(2) increases,the amounts of m-ZrO_(2) and SiC decrease,and the total amount of non-oxides ZrB_(2),SiC and ZrC gradually increases;the optimal soaking time is 3 h;(3)compared with the sample without AlF_(3),the sample with 0.5% AlF_(3) has decreased m-ZrO_(2)amount,noticeably increased ZrB_(2) amount but decreased SiC amount;however,when the addition of AlF_(3) increases from 0.5%to 2.5%,the m-ZrO_(2) amount increases,the ZrB_(2)amount decreases,and the SiC amount changes slightly;the optimum AlF_(3)addition is 0.5%. 展开更多
关键词 ZIRCON carbothermal reduction zirconium diboride-zirconia-silicon carbide composite powder
下载PDF
Coarse WC Particles Ceramic-Metal Composite Coating by Laser Cladding
6
作者 曾晓雁 朱蓓蒂 +2 位作者 陶曾毅 杨树国 崔昆 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1992年第3期209-213,共5页
The coarse WC particles ceramic-metal com- posite coatings with WC density of 67 wt-% and thickness of 1.0-1.2 mm have been cladded on 20Ni4Mo steel surface by a 2 kW CO_2 laser.The sintered WC particles with the size... The coarse WC particles ceramic-metal com- posite coatings with WC density of 67 wt-% and thickness of 1.0-1.2 mm have been cladded on 20Ni4Mo steel surface by a 2 kW CO_2 laser.The sintered WC particles with the size of 600-1000 μm are chosen as the main strengthening phase, Ni-base self-flux alloy as the binder in the compo- site coatings.The microstructure and microhardness of both WC particles and binder are analysed.The rigid ball indention with acoustic emission technique is used to evaluate the brittleness of the coating.Finally,the abrasive wear resistance of the coating is tested.Besides,the coatings with the same ratio and size of WC parti- cles in low carbon steel tube rod were cladded on 20Ni4Mo steel by atomic hydrogen welding tech- nique and analysed by the same way,their results are compared. 展开更多
关键词 laser cladding ceramic-metal composite coating BRITTLENESS wear resistance
下载PDF
Deformation behaviors and processing maps of CNTs/Al alloy composite fabricated by flake powder metallurgy 被引量:2
7
作者 何维均 李春红 +4 位作者 栾佰峰 邱日盛 王柯 李志强 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3578-3584,共7页
Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and str... Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1). 展开更多
关键词 CNTs/Al alloy composite flake powder metallurgy recrystallization processing map flow stress
下载PDF
Hot deformation and processing maps of Al_2O_3/Al composites fabricated by flake powder metallurgy 被引量:1
8
作者 栾佰峰 邱日盛 +4 位作者 李春红 杨晓芳 李志强 张荻 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1056-1063,共8页
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r... The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps. 展开更多
关键词 Al2O3/Al composites flake powder metallurgy flow stress processing map
下载PDF
Effect of glass fibre(GF) addition on microstructure and tensile property of GF/Pb composites fabricated by powder metallurgy
9
作者 耿耀宏 王蓬瑚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2672-2678,共7页
GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that rel... GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that relative densities decrease with increasing GF fraction, and the 50μm-GF reinforced specimens exhibit a better densification than the 300μm-GF reinforced ones. The GF particles distribute quite uniformly inPb matrix, and the composites fabricated at low sintering temperature (〈200℃) possess fine-grain microstructure. The addition of GF significantly improves the strength of the Pb composites, and the ultimate tensile strength of the Pb composite reinforcedwith the addition of 50μm-0.5% GF(mass fraction)is about 30MPa higher than that of GF-free sample. For all composites groups, increasing the reinforcement content from 0.5%to 2%(mass fraction)results in a decrease in both tensile strength and ductility. 展开更多
关键词 GF/Pb composites powder metallurgy sintering microstructure tensile property
下载PDF
Densification process of 10%B_4C-AA2024 matrix composite strips by semi-solid powder rolling 被引量:1
10
作者 莫灼强 刘允中 +1 位作者 贾惠芳 吴敏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第10期3181-3188,共8页
Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and A... Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and AA2024 mixed powders in the presence of liquid phase were investigated.The relationships between relative densities and rolling forces were analyzed as well.The results show that liquid fraction plays an important role in the densification process which can be divided into three stages.Rolling deformation is the main densification mechanism in deformation area when the liquid fraction is lower than 20%.When the liquid fraction is equal to or higher than 20%,the flowing and filling of liquid phase are the densification mechanisms in deformation area.The relative densities increase with increasing rolling forces.The relative density–rolling force curves are similar at 550 °C and 585 °C.The characteristics of the curve shapes are apparently different at 605 °C and 625 °C. 展开更多
关键词 semi-solid powder rolling composite strip densification process rolling deformation
下载PDF
Comparative Assessment on Microstructure and Properties of in-situ TiC+Ti_(5)Si_(3)Reinforced TiAl-Sn-Zr Matrix Composites by Spark Plasma Sintering and Argon Protected Sintering 被引量:1
11
作者 姚辉 许晓静 +4 位作者 CAI Chengbin LI Chen CHEN Fenghua LIU Yangguang XIAO Yishui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第1期199-205,共7页
The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium ma... The effects of SiC particles(SiCp)on high temperature oxidation behavior of titanium matrix composites(TMCs)under different powder metallurgy processes were investigated.In situ Ti C+Ti_(5)Si_(3)reinforced titanium matrix composites were prepared by discharge plasma sintering(SPS)and argon protective sintering(APS).The results show that the two processes have a negligible effect on the composition and hardness of the samples,but the hardness of the two samples is significantly improved by adding SiCp.The apparent porosity of SPS process is obviously smaller than that of APS process,whereas,the apparent porosity increases slightly with the addition of SiCp.The oxide layer thickness and mass gain of the samples obtained by SPS process are smaller than those obtained by APS process.The oxide thickness and mass gain of both processes are further reduced by adding SiCp.The SPS composites showed the best high temperature oxidation resistance.Therefore,TMCs with Si Cp by SPS can effectively improve the high-temperature oxidation behavior of the materials. 展开更多
关键词 powder metallurgy titanium matrix composites High-temperature oxidation TiC and Ti_(5)Si_(3) Ti-Al-Sn-Zr
下载PDF
Effect of powder mixing process on the microstructure and thermal conductivity of Al/diamond composites fabricated by spark plasma sintering 被引量:17
12
作者 CHU Ke, JIA Chengchang, LIANG Xuebing, and CHEN Hui School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 《Rare Metals》 SCIE EI CAS CSCD 2010年第1期86-91,共6页
Two powder mixing processes, mechanical mixing (MM) and mechanical alloying (MA), were used to prepare mixed Al/diamond powders, which were subsequently consolidated using spark plasma sintering (SPS) to produce... Two powder mixing processes, mechanical mixing (MM) and mechanical alloying (MA), were used to prepare mixed Al/diamond powders, which were subsequently consolidated using spark plasma sintering (SPS) to produce bulk Al/diamond composites. The effects of the powder mixing process on the morphologies of the mixed powders, the microstructure and the thermal conductivity of the composites were investigated. The results show that the powder mixing process can significantly affect the microstructure and the thermal conductivity of the composites. Agglomerations of the particles occurred in mixed powders using MM for 30 min, which led to high pore content and weak interfacial bonding in the composites and resulted in low relative density and low thermal conductivity for the composites. Mixed powders of homogeneous distribution of diamond particles could be obtained using MA for 10 min and MM for 2 h. The composite prepared through MA indicated a high relative density but low thermal conductivity due to its defects, such as damaged particles, Fe impurity, and local interfacial debonding, which were mainly introduced in the MA process. In contrast, the composite made by MM for 2 h demonstrated high relative density and an excellent thermal conductivity of 325 W.m^-1.K^-1, owing to its having few defects and strong inter-facial bonding. 展开更多
关键词 metal matrix composites thermal properties SINTERING powder mixing
下载PDF
Preparation of nanosized W/Cu composite powder by sol-gel technique 被引量:9
13
作者 LIBinghu KANGZhanying +1 位作者 CHENWenge DINGBingjun 《Rare Metals》 SCIE EI CAS CSCD 2005年第2期170-173,共4页
Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an... Cu(NO3)(2) and (NH4)(6)H(2)W(12)O(40)center dot 4H(2)O were used to prepare W/Cu nanosized composite powder by sol-gel technique. The influences of heat treatment process, pH value of the solution and the amount of an addition agent on particle size were investigated by DSC, XRD and TEM. The results show that, at a certain heat treatment temperature, the W/Cu nanoparticle size increases with the pH value or the amount of the addition agent increasing. 展开更多
关键词 composite nanosized composite powder SOL-GEL particle size W/Cu
下载PDF
Fabrication of homogeneously dispersed graphene/Al composites by solution mixing and powder metallurgy 被引量:13
14
作者 Xiang Zeng Jie Teng +3 位作者 Jin-gang Yu Ao-shuang Tan Ding-fa Fu Hui Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期102-109,共8页
Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness an... Graphene-reinforced aluminum (AI) matrix composites were successfully prepared via solution mixing and powder metallurgy in this study. The mechanical properties of the composites were studied using microhardness and tensile tests. Compared to the pure Al alloy, the graphene/Al composites showed increased strength and hardness. A tensile strength of 255 MPa was achieved for the graphene/Al com- posite with only 0.3wt% graphene, which has a 25% increase over the tensile strength of the pure Al matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to investigate the morphol- ogies, chemical compositions, and microstructures of the graphene and the graphene/A1 composites. On the basis of fractographic evidence, a relevant fracture mechanism is proposed. 展开更多
关键词 GRAPHENE metal matrix composites solution mixing powder metallurgy mechanical properties
下载PDF
Effects of Metal and Composite Metal Nanopowders on the Thermal Decomposition of Ammonium Perchlorate (AP) and the Ammonium Perchlorate/Hydroxyterminated Polybutadiene (AP/HTPB) Composite Solid Propellant 被引量:9
15
作者 刘磊力 李凤生 +2 位作者 谈玲华 李敏 杨毅 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2004年第4期595-598,共4页
Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybuta... Effects of metal (Ni, Cu, Al) and composite metal (NiB, NiCu, NiCuB) nanopowders on the thermal decomposition of ammonium perchlorate (AP) and composite solid propellant ammonium perchlorate/hydroxyterminated polybutadiene (AP/HTPB) were studied by thermal analysis (DTA). The results show that metal and composite metal nanopowders all have good catalytic effects on the thermal decomposition of AP and AP/HTPB composite solid propellant. The effects of metal nanopowders on the thermal decomposition of AP are less than those of the composite metal nanopowders. The effects of metal and composite metal nanopowders on the thermal decomposition of AP are different from those on the thermal decomposition of the AP/HTPB composite solid propellant. 展开更多
关键词 NANOpowder metal powder composite metal powder composite solid propellant ammonium perchlo-rate. thermal decompositionrate thermal decomposition
下载PDF
Electromagnetic and microwave absorbing properties of FeCoB powder composites 被引量:7
16
作者 Shen-Gen Zhang Hang-Xin Zhu +3 位作者 Jian-Jun Tian De-An Pan Bo Liu Yan-Tao Kang 《Rare Metals》 SCIE EI CAS CSCD 2013年第4期402-407,共6页
The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that t... The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz. 展开更多
关键词 Fe48Co48B4 powder composites Mechanical milling Electromagnetic parameters Microwave absorbing properties
下载PDF
Preparation and Mechanical Properties of-SiC Nanoparticle Reinforced Aluminum Matrix Composite by a Multi-step Powder Metallurgy Process 被引量:5
17
作者 WANG Linong WU Hao +2 位作者 WU Xingping CHEN Minghai LIU Ning 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第6期1059-1063,共5页
β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur... β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite. 展开更多
关键词 Β-SIC NANOPARTICLES particulate reinforced Al matrix composite powder metallurgy
下载PDF
Process−microstructure−properties relationship in Al−CNTs−Al2O3 nanocomposites manufactured by hybrid powder metallurgy and microwave sintering process 被引量:6
18
作者 Meysam TOOZANDEHJANI Farhad OSTOVAN +3 位作者 Khairur Rijal JAMALUDIN Astuty AMRIN Khamirul Amin MATORI Ehsan SHAFIEI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第9期2339-2354,共16页
Al−2CNTs−xAl2O3 nanocomposites were manufactured by a hybrid powder metallurgy and microwave sintering process.The correlation between process-induced microstructural features and the material properties including phy... Al−2CNTs−xAl2O3 nanocomposites were manufactured by a hybrid powder metallurgy and microwave sintering process.The correlation between process-induced microstructural features and the material properties including physical and mechanical properties as well as ultrasonic parameters was measured.It was found that physical properties including densification and physical dimensional changes were closely associated with the morphology and particle size of nanocomposite powders.The maximum density was obtained by extensive particle refinement at milling time longer than 8 h and Al2O3 content of 10 wt.%.Mechanical properties were controlled by Al2O3 content,dispersion of nano reinforcements and grain size.The optimum hardness and strength properties were achieved through incorporation of 10 wt.%Al2O3 and homogenous dispersion of CNTs and Al2O3 nanoparticles(NPs)at 12 h of milling which resulted in the formation of high density of dislocations and extensive grain size refinement.Also both longitudinal and shear velocities and attenuation increase linearly by increasing Al2O3 content and milling time.The variation of ultrasonic velocity and attenuation was attributed to the degree of dispersion of CNTs and Al2O3 and also less inter-particle spacing in the matrix.The larger Al2O3 content and more homogenous dispersion of CNTs and Al2O3 NPs at longer milling time exerted higher velocity and attenuation of ultrasonic wave. 展开更多
关键词 hybrid composite aluminum composites powder metallurgy microwave sintering MICROSTRUCTURE mechanical properties ultrasonic velocity ultrasonic attenuation
下载PDF
Indium tin oxide nanosized composite powder prepared using waste ITO target 被引量:3
19
作者 LIU Jiaxiang GAN Yong ZENG Shengnan 《Rare Metals》 SCIE EI CAS CSCD 2005年第3期277-282,共6页
Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolv... Indium tin oxide (ITO) nano-particles were prepared directly using waste ITO target, which had been coated by magnetron controlled sputtering. The waste ITO target was cleaned with de-ionized water, and then dissolved in acid, filtrated, neutralized, manipulated through azeotropic distillation and finally dried, and in this way the precursor of indium tin hydroxide was obtained. The nanosized rio composite powder was prepared after the precursor heat-treated at 500℃ for 2 h. TEM images show a narrow distribution of particle size is 5-20 nm and the particle size can be controlled. Its granule has a spherical shape and the dispersion of the particle is well. X-ray diffraction (XRD) patterns indicate the only cubic In2O3 phase in the ITO powder hot-treated at 500℃. The purity of ITO composite powder is 99.9907%. The content of radium within filtrate was detected by using the EDTA titration of determination of indium in the ITO powder and ITO target. Appropriate amount of SnCl4.5H2O was dissolved in the filtrate, and then ITO powder containing 10 wt.% SnO2 was successfully prepared by heat-treating. 展开更多
关键词 waste ITO target nanosized ITO composite powder chemical technique MICROSTRUCTURE
下载PDF
The absorbing properties of Fe_(73.5) Cu_1 Nb_3Si_(13.5)B_9 amorphous powder/S-glass fiber-reinforced epoxy composite panels 被引量:2
20
作者 Xia-Lian Zheng Zheng-Hou Zhu Xiao-Min Li 《Rare Metals》 SCIE EI CAS CSCD 2013年第3期294-298,共5页
Fe73.5Cu1Nb3Si13.5B9 (or FeCuNbSiB) powder/ S-glass fiber-reinforced epoxy composite panels were pre- pared by mold pressing method. Metallographic analysis shows that the amorphous powders are evenly distributed be... Fe73.5Cu1Nb3Si13.5B9 (or FeCuNbSiB) powder/ S-glass fiber-reinforced epoxy composite panels were pre- pared by mold pressing method. Metallographic analysis shows that the amorphous powders are evenly distributed between the layers of S-glass fibers. The effects of the Fe- CuNbSiB powder mass fraction on the complex permittivity, complex permeability, and microwave absorption of the composite panels have been studied in the frequency range of 2.6-18.0 GHz. The complex permittivity of the composite panels with different mass fractions of the FeCuNbSiB powders shows several peaks in the 2.6-18.0 GHz fre- quency range. The complex permeability of the composites decreases with the increasing frequency in the frequency range of 8-18 GHz. The composite with FeCuNbSiB/epoxy mass ratio of 2.5:1.0 has excellent microwave absorption properties of a minimum reflection loss value -30.5 dB at 10.93 GHz for a thickness of 2 mm. A reflection loss exceeding -10 dB can be obtained in a broad frequency range of 3.2-18.0 GHz with a thickness of 1.15-5.00 mm. For the FeCuNbSiB composites, the magnetic loss is the dominant term for microwave absorption. The FeCuNbSiB powders are a possible candidate for high-performance microwave absorption filler. 展开更多
关键词 Amorphous powders composites PERMEABILITY PERMITTIVITY Absorbing properties
下载PDF
上一页 1 2 176 下一页 到第
使用帮助 返回顶部