Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the ...Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the phase composition,the microstructure,the porosity,the mechanical properties,the dielectric constant and the tangent of the dielectric loss angle of the porous Si2N2O ceramics was investigated.The results reveal that a suitable addition of Li2CO3 can promote the generation of Si2N2O but excessive or inadequate Li2CO3 causes decomposition of Si2N2O ceramics.The prepared porous Si2N2O ceramics have good mechanical properties,good thermal shock resistance,and low dielectric properties,which have excellent potential for application in microwave sintering furnaces.展开更多
This paper introduces the characteristic of microwave sintering,introduces and analyses the process of microwave sintering of thealumina ceramics, moreover, compared with the experiments ofconventional sintering metho...This paper introduces the characteristic of microwave sintering,introduces and analyses the process of microwave sintering of thealumina ceramics, moreover, compared with the experiments ofconventional sintering method. Based on the research, some resultsare obtained, and experimental basis for microwave sintering ofceramics is put forward.展开更多
The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) con...The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) considerably facilitated the densification of Ba2Ti3Nb4O18 ceramics.Appropriate addition of H3BO3 ( 〈3.5 wt%) remarkably improved the microwave dielectric properties of ceramics.The addition of H3BO3 and CuO successfully reduced the sintering temperature of Ba2Ti3Nb4O18 ceramics from 1300 to 1050 ℃.Ba2Ti3Nb4O18 ceramics sintered at 1 050 ℃ for 4 h with the addition of 1.0 wt% CuO and 3.5 wt% H3BO3 exhibited good microwave dielectric properties:er=33.74,Q?f=13 812 GHz,and tf=-5.35 ppm/°C at about 5.0 GHz.展开更多
The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental result...The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental results demonstrate that the addition of LMB glass effectively lowers the sintering temperature of Li2MgTi3O8 ceramic from 1025 ℃ to 875 ℃ and induces no obvious degradation of the microwave dielectric properties. Typically, the 1.5%LMB glass-added Li2MgTi3O8 ceramic sintered at 875 ℃ for 4 h shows excellent microwave dielectric properties of Q×f=45403 GHz, εr=25.9 and τf≈0 ℃-1. The dielectric ceramic exhibits stability against the reaction with the Ag electrode, which indicates that the ceramics could be applied in multilayer microwave devices requiring low firing temperatures.展开更多
The effects of ZnO-B2O3 (ZB2) on the sintering behavior and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics were investigated. The densities of the specimens reached the maximum value by addi...The effects of ZnO-B2O3 (ZB2) on the sintering behavior and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics were investigated. The densities of the specimens reached the maximum value by adding 3 wt.% ZB2 and then decreased. The sintering temperature of the specimens was lowered from 1300 to 1100℃ without degradation of the microwave dielectric properties. The (Ca0.254Li0.19Sm0.14)TiO3+ 3 wt.% ZB2 sintered at 1100℃ for 3 h showed good microwave dielectric properties, εr= 108.2, Qf= 6545 GHz, and rf= 6.5 ppm/℃, respectively, indicating that ZB2 was an effective sintering aid to improve the densification and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics.展开更多
At present,the concerned papers appeared in special magazines about discussing or introducing finite element method for calculating temperature distribution in ceramic body during microwave sintering, are not a good m...At present,the concerned papers appeared in special magazines about discussing or introducing finite element method for calculating temperature distribution in ceramic body during microwave sintering, are not a good many, but it seems that finite element method is more convenient than finite difference method in dealing with special or complex geometry of ceramic body. In this paper, we describe a 3D finite element model simulating the heating pattern of ceramic microwave sintering in TE(10N) single-mode rectangular cavity in which the microwave energy deposition pattern in the samples can be expressed as an analysis function of space, and present a series of transient temperature distributions and heating rates of ceramic cylinders and cuboids tender variable thermal conductivities, dieletric loss factors,power consumer-levels, etc. These digital solutions may provide a better understanding of eliminating thermal runaway and improving temperature homogeneity.展开更多
Ultra-large zirconia toughened alumina (ZTA,mass ratio of Al2O3 and ZrO2 is 78∶22) ceramics with eccentric circle shape were successfully sintered by microwave sintering with a multi-mode cavity at 2.45 GHz.The dimen...Ultra-large zirconia toughened alumina (ZTA,mass ratio of Al2O3 and ZrO2 is 78∶22) ceramics with eccentric circle shape were successfully sintered by microwave sintering with a multi-mode cavity at 2.45 GHz.The dimension of ZTA ceramics (green body) is 165 mm (outer diameter) × 25 mm (thickness).The optimized sintering temperature of microwave sintering is about 1500 ℃ for 30 min,and the total sintering time is about 4 h which is much shorter than that of conventional sintering.An auxiliary-heating insulation device was designed based on the principle of local caloric compensation to guarantee the intact sintered samples.With the increasing of sintering temperature,more and more microwave energy is absorbed within the entire sample,volumetric densification performs,and phases shift from m-ZrO2 phase to t-ZrO2 phase and cause Al2O3 grain growth.展开更多
Relaxor ferroelectric ceramics with the composition ofxPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-zPbTiO3 was fast sintered in a 2.45 GHz microwave system. Microwave-sintered samples illustrate more rapid densification and mu...Relaxor ferroelectric ceramics with the composition ofxPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-zPbTiO3 was fast sintered in a 2.45 GHz microwave system. Microwave-sintered samples illustrate more rapid densification and much smaller grain size microstructure than conventional sintered samples. Also the microwave processing significantly increases the dielectric strength and flexural strength of the relaxor so that its strength becomes comparable with modified BaTiO3, and could obtain comparable dielectric properties in comparison with conventional sintering process. Microwave processing has many advantages for sintering of relaxor ferroelectric ceramics used as multilayer capacitors.展开更多
A series of high-k[(Na_(0.5)Bi_(0.5))_(x)Bi_(1-x)](W_(x)V_(1-x))O_(4)(abbreviated as NBWV(x value))solid solution ceramics with a scheelite-like structure are synthesized by a modified solid-state reaction method at t...A series of high-k[(Na_(0.5)Bi_(0.5))_(x)Bi_(1-x)](W_(x)V_(1-x))O_(4)(abbreviated as NBWV(x value))solid solution ceramics with a scheelite-like structure are synthesized by a modified solid-state reaction method at the temperature range of 680-760 C.A monoclinic(0≤x<0.09)to tetragonal scheelite(0.09≤x≤1.0)structural phase transition is confirmed by X-ray difraction(XRD),Raman,and infrared(IR)analyses.The effect of structural deformation and order-disorder caused by Na^(+)/Bi^(3+)/W^(6+) complex substitution on microwave dielectric properties is investigated in deail.The compositional series possess a wide range of variable relative permittivity(er=24.8-80)and temperature coefficient of resonant frequency(TCF value,-271.9-188.9 ppm/℃).The maximum permittivity of 80 and a high Qxf value of~10,000 GHz are obtained near the phase boundary at x=0.09.Furthermore,the temperature-stable dielectric ceramics sintered at 680 C with excellent microwave dielectric properties of ε_(r)=80.7,Qxf=9400 GHz(at 4.1 GHz),and TCF value=-3.8 ppm/℃ are designed by mixing the components of x=0.07 and 0.08.In summary,similar sinterability and structural compatibility of scheelite-like solid solution systems make it potential for low-temperature co-fired ceramic(LTCC)applications.展开更多
Glass-free MgO-based microwave dielectric ceramics(1-x)wt%(0.98 MgO-0.02 Al2O3)-x wt%LiF(x=0.5,1,2,3,4)were synthesized where LiF and Al2O3 were utilized as sintering additive and reinforcement phase in MgO matrix res...Glass-free MgO-based microwave dielectric ceramics(1-x)wt%(0.98 MgO-0.02 Al2O3)-x wt%LiF(x=0.5,1,2,3,4)were synthesized where LiF and Al2O3 were utilized as sintering additive and reinforcement phase in MgO matrix respectively.It was found that ion substitution is apt to occur between LiF and MgO,leading to the formation of oxygen vacancies and MgF2.Nevertheless,different from ordinary liquidphase sintering,morphologies of ceramics were distinctly altered with grains changing from polyhedron to sphere-like shape and densities underwent obvious decrease when excessive amount of LiF was introduced and we call it excessive liquid-phase sintering.Grain boundary weakening caused by this circumstance would exert an adverse effect on physical properties.Moreover,LiF addition dramatically reduced dielectric breakdown strength and altered the dielectric breakdown behavior of MgO-based ceramics,which is dominated by electrical breakdown mechanism.Combination of good properties were achieved in 1 wt%LiF modified MgO-based ceramics sintered at 950℃ which exhibited superior microwave properties(εr=9.56,tanδ=9.2×10^(-5),Qf=124,600 GHz),high flexural strength(184.5 MPa),high thermal conductivity(21.3 W/(m,K)),high coefficient of thermal expansion(-12 ppm/℃)and moderate electrical properties(Eb=35.9 kV/mm,r=4.9×10^(12) U cm).展开更多
0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.With...0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.展开更多
This study investigates the bulk density,sintering behaviour,and microwave dielectric properties of the MgO-2B_(2)O_(3) series ceramics synthesised by solid-state reaction.According to the X-ray diffraction and micros...This study investigates the bulk density,sintering behaviour,and microwave dielectric properties of the MgO-2B_(2)O_(3) series ceramics synthesised by solid-state reaction.According to the X-ray diffraction and microstructural analyses,the as-prepared MgO-2B_(2)O_(3) ceramics possess a single-phase structure with a rod-like morphology.The effects of different quantities of H_(3)BO_(3) and BaCu(B_(2)O5)(BCB)on the bulk density,sintering behaviour,and microwave dielectric properties of the MgO-2B_(2)O_(3) ceramics were investigated.Accordingly,the optimal sintering temperature was obtained by adding 30 wt%H_(3)BO_(3) and 8 wt%BCB.We also reduced the sintering temperature to 825°C.Furthermore,the addition of 40 wt%H_(3)BO_(3) and 4 wt%BCB increased the quality factor,permittivity,and temperature coefficient of resonance frequency of MgO-2B_(2)O_(3) to 44,306 GHz(at 15 GHz),5.1,and-32 ppm/℃,respectively.These properties make MgO-2B_(2)O_(3) a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics.展开更多
The sintering behavior,microstructure and microwave dielectric properties of (1–x)CaTiO3–xLaAlO3 (x=0.1,0.3,0.5,0.7,0.9,respectively) ceramics were investigated systematically by thermogravimetry-differential th...The sintering behavior,microstructure and microwave dielectric properties of (1–x)CaTiO3–xLaAlO3 (x=0.1,0.3,0.5,0.7,0.9,respectively) ceramics were investigated systematically by thermogravimetry-differential thermal analysis (TG-DSC),X-ray diffraction (XRD),scanning electron microscopy (SEM) and a network analyzer.The result showed that forming temperature of the perovskite type crystal increased with increasing of x value.0.9CaTiO3-0.1LaAlO3 ceramics were sintered well from 1 400 to 1 550 oC,its bulk density increased with sintering temperature,and microwave dielectric properties of the ceramics at 1 400 oC was shown as follows: relative dielectric constant εr= 45.1,Q×f= 46 087 GHz and τf=–14.1×10–6/oC,respectively.But 0.7CaTiO3-0.3LaAlO3 ceramics were sintered well only when sintering temperature rose to 1 500 oC.(1–x)CaTiO3–xLaAlO3 (x=0.5,0.7 and 0.9,respectively) were not sintered well up to 1 550 oC and the sintered samples exhibited porous characteristic and with low bulk density.展开更多
The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition ...The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition along with microwave dielectric performances for Li_(3)Mg_(2)Sb_(1-x)O_(6) ceramics were studied.Combined with X-ray diffraction(XRD)and Raman spectra,it was confirmed that phase composition could not be affected by the Sb nonstoichiometry and almost pure phase Li_(3)Mg_(2)SbO_(6) was formed in all compositions.Appropriate Sb-deficiency in Li_(3)Mg_(2)SbO_(6) not only lowered its sintering temperature but also remarkably improved its Q×f value.In particular,non-stoichiometric Li_(3)Mg_(2)Sb_(0.9)O_(6) ceramics sintered at 1250℃/5 h owned seldom low dielectric constant ε_(r)=10.8,near-zero resonant frequency temperature coefficient τ_(f)=-8.0 ppm/℃,and high quality factor Q×f=86,300 GHz(at 10.4 GHz).This study provides an alternative approach to ameliorate its dielectric performances for Li_(3)Mg_(2)SbO_(6)-based compounds through defect-engineering.展开更多
With the rapid development of mobile communication technology towards 5G and 6G,the microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are urgently demanded.Here,the excellent microwave...With the rapid development of mobile communication technology towards 5G and 6G,the microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are urgently demanded.Here,the excellent microwave dielectric properties are reported in H3BO3 ceramics with the molecular crystal structure,whose permittivity(2.84)and density(1.46 g/cm^(3))are record-low among the low-loss ceramics.The ultra-high Qf value of 146,000 GHz(or the ultra-low dielectric loss of 1.03×10^(-4) at 15 GHz)is also distinguished.Besides,the H_(3)BO_(3) ceramics can be densified at room temperature by a simple cold sintering process in a short time of 10 min,and this brings many advantages for the integration with microwave circuits.The large molecule volume originating from the molecular crystal structure and the low dielectric polarizabilities of H^(+) and B^(3+) are responsible for the ultra-low permittivity of H_(3)BO_(3) ceramics,and more microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are expected to be explored in the molecular crystals.展开更多
In this paper,the BaO-0.6ZnO-xTiO2 ceramics with x=2.5-2.8 have been prepared by the conventional solid-state ceramic route for the purpose of investigating the effect of TiO2 content on the microwave dielectric prope...In this paper,the BaO-0.6ZnO-xTiO2 ceramics with x=2.5-2.8 have been prepared by the conventional solid-state ceramic route for the purpose of investigating the effect of TiO2 content on the microwave dielectric properties.The XRD results showed that the main crystal phase in the sintered ceramics was Ba4ZnTi11O27 and that the additional phases:Ba2ZnTi5O13 and BaZn2.03Ti3.93O10.89 were presented,depending on the TiO2 contents.The SEM photographs of the samples sintered at 1200℃ for 2 h showed a high compact microstructure.Because the phase composition of ceramics samples was changed with TiO2 content,the dielectric constant(εr),the quality factor values(Q×f) and the temperature coefficient of resonant frequency(τf) were first increased,continuously came up to a peak value,and then let up.It was lucky to find that the sample with composition BaO-0.6ZnO-2.7TiO2 had both the maximum dielectric constant εr=36.1 and the maximum Q×f value of 29320 GHz,and more importantly,it had an acceptable temperature coefficient of resonant frequency τf=10.45 ppm/℃.展开更多
Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their mic...Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their microstructures, sintering behaviors, and microwave dielectric properties were systematically investigated. On the basis of the X-ray diffraction (XRD) results, all the samples were matched well with Pr_(2)Zr_(3)(MoO_(4))_(9) structures, which belonged to the space group R3¯c. The lattice parameters were obtained using the Rietveld refinement method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips—Van Vechten—Levine (P—V—L) theory. Excellent dielectric properties of Ce_(2)[Zr_(0.94)(Al_(1/2)Ta_(1/2))_(0.06)]_(3)(MoO_(4))_(9) with a relative permittivity (ε_(r)) of 10.46, quality factor (Q × f) of 83,796 GHz, and temperature coefficient of resonant frequency (τ_(f)) of −11.50 ppm/℃ were achieved at 850 ℃.展开更多
Ceramic samples of(Bi_(1-x)Pb_(x))NbO_(4)(x=0,0.025,0.05,0.10,0.15,0.20)with 0.75 wt.%V2O5 addition sintered at 920℃,940℃ and 960℃ are investigated.Pb is selected as a substitute for Bi^(3+)in BiNbO_(4) ceramics as...Ceramic samples of(Bi_(1-x)Pb_(x))NbO_(4)(x=0,0.025,0.05,0.10,0.15,0.20)with 0.75 wt.%V2O5 addition sintered at 920℃,940℃ and 960℃ are investigated.Pb is selected as a substitute for Bi^(3+)in BiNbO_(4) ceramics as it exists in two stable valence states of+2 and+4 and the average valency matches to that of Bi^(3+).The average Shannon radius(for octahedral coordination)of Pb^(2+)(1.19Å)and Pb^(4+)(0.775Å)cations is 0.9825Å,which is similar to that of Bi^(3+)ion(1.03Å).The dense(>94%)polycrystalline(Bi_(1-x)Pb_(x))NbO_(4) samples fabricated mostly reveal orthorhombic(Pnna)phase(α-BiNbO_(4),Sp.Gp.52)by powder XRD.Presence of satellite Pb2Nb2O7 phase,the amount of which is increasing with increase in Pb content,is also noticed.The microwave dielectric constant(ε'r)values of the niobates are found to increase from 42 to 71,whereas the quality factor(Qu.f)values are found to decrease from 5400 to 550 GHz with increasing substitution of Pb.The compositions so synthesized are important as hardly there are any microwave dielectric ceramics available with 45<ε'r<75.展开更多
基金The authors would like to thank the National Key R&D Program of China(2017YFB0304000)National Natural Science Foundation of China(51932008,51772277)Central China Thousand Talents Project(2042005100111).
文摘Si2N2O ceramics were prepared using amorphous Si3N4 as the raw material and Li2CO3 as the sintering additive through vacuum multi-stage sintering.The influence of the Li2CO3 addition(0%,1%,2%,3%,and 5%,by mass)on the phase composition,the microstructure,the porosity,the mechanical properties,the dielectric constant and the tangent of the dielectric loss angle of the porous Si2N2O ceramics was investigated.The results reveal that a suitable addition of Li2CO3 can promote the generation of Si2N2O but excessive or inadequate Li2CO3 causes decomposition of Si2N2O ceramics.The prepared porous Si2N2O ceramics have good mechanical properties,good thermal shock resistance,and low dielectric properties,which have excellent potential for application in microwave sintering furnaces.
基金the National Advanced Manerale Commotee China 563 Plan
文摘This paper introduces the characteristic of microwave sintering,introduces and analyses the process of microwave sintering of thealumina ceramics, moreover, compared with the experiments ofconventional sintering method. Based on the research, some resultsare obtained, and experimental basis for microwave sintering ofceramics is put forward.
文摘The effects of CuO and H3BO3 additions on the low-temperature sintering,microstructure,and microwave dielectric properties of Ba2Ti3Nb4O18 ceramics were investigated.The addition of less amount of CuO ( 〈1 wt%) considerably facilitated the densification of Ba2Ti3Nb4O18 ceramics.Appropriate addition of H3BO3 ( 〈3.5 wt%) remarkably improved the microwave dielectric properties of ceramics.The addition of H3BO3 and CuO successfully reduced the sintering temperature of Ba2Ti3Nb4O18 ceramics from 1300 to 1050 ℃.Ba2Ti3Nb4O18 ceramics sintered at 1 050 ℃ for 4 h with the addition of 1.0 wt% CuO and 3.5 wt% H3BO3 exhibited good microwave dielectric properties:er=33.74,Q?f=13 812 GHz,and tf=-5.35 ppm/°C at about 5.0 GHz.
基金Project(2010GXNSFA013029)supported by National Undergraduates Innovating Experimentation Project of ChinaProject(101059529)supported by Natural Science Foundation of Guangxi,China
文摘The effects of Li2O-MgO-B2O3 (LMB) glass additive on the sintering characteristics, phase purity, microstructure, and microwave dielectric properties of Li2MgTi3O8 ceramics were investigated. The experimental results demonstrate that the addition of LMB glass effectively lowers the sintering temperature of Li2MgTi3O8 ceramic from 1025 ℃ to 875 ℃ and induces no obvious degradation of the microwave dielectric properties. Typically, the 1.5%LMB glass-added Li2MgTi3O8 ceramic sintered at 875 ℃ for 4 h shows excellent microwave dielectric properties of Q×f=45403 GHz, εr=25.9 and τf≈0 ℃-1. The dielectric ceramic exhibits stability against the reaction with the Ag electrode, which indicates that the ceramics could be applied in multilayer microwave devices requiring low firing temperatures.
基金supported by the National Natural Science Foundation of China (No. 50572008)
文摘The effects of ZnO-B2O3 (ZB2) on the sintering behavior and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics were investigated. The densities of the specimens reached the maximum value by adding 3 wt.% ZB2 and then decreased. The sintering temperature of the specimens was lowered from 1300 to 1100℃ without degradation of the microwave dielectric properties. The (Ca0.254Li0.19Sm0.14)TiO3+ 3 wt.% ZB2 sintered at 1100℃ for 3 h showed good microwave dielectric properties, εr= 108.2, Qf= 6545 GHz, and rf= 6.5 ppm/℃, respectively, indicating that ZB2 was an effective sintering aid to improve the densification and microwave dielectric properties of (Ca0.254Li0.19Sm0.14)TiO3 ceramics.
文摘At present,the concerned papers appeared in special magazines about discussing or introducing finite element method for calculating temperature distribution in ceramic body during microwave sintering, are not a good many, but it seems that finite element method is more convenient than finite difference method in dealing with special or complex geometry of ceramic body. In this paper, we describe a 3D finite element model simulating the heating pattern of ceramic microwave sintering in TE(10N) single-mode rectangular cavity in which the microwave energy deposition pattern in the samples can be expressed as an analysis function of space, and present a series of transient temperature distributions and heating rates of ceramic cylinders and cuboids tender variable thermal conductivities, dieletric loss factors,power consumer-levels, etc. These digital solutions may provide a better understanding of eliminating thermal runaway and improving temperature homogeneity.
基金This work was sponsored by the National Natural Science Foundation of China
文摘Ultra-large zirconia toughened alumina (ZTA,mass ratio of Al2O3 and ZrO2 is 78∶22) ceramics with eccentric circle shape were successfully sintered by microwave sintering with a multi-mode cavity at 2.45 GHz.The dimension of ZTA ceramics (green body) is 165 mm (outer diameter) × 25 mm (thickness).The optimized sintering temperature of microwave sintering is about 1500 ℃ for 30 min,and the total sintering time is about 4 h which is much shorter than that of conventional sintering.An auxiliary-heating insulation device was designed based on the principle of local caloric compensation to guarantee the intact sintered samples.With the increasing of sintering temperature,more and more microwave energy is absorbed within the entire sample,volumetric densification performs,and phases shift from m-ZrO2 phase to t-ZrO2 phase and cause Al2O3 grain growth.
基金Project supported by the National Natural Science Foundation of China (Grant No. 59332052).
文摘Relaxor ferroelectric ceramics with the composition ofxPb(Mg1/3Nb2/3)O3-yPb(Zn1/3Nb2/3)O3-zPbTiO3 was fast sintered in a 2.45 GHz microwave system. Microwave-sintered samples illustrate more rapid densification and much smaller grain size microstructure than conventional sintered samples. Also the microwave processing significantly increases the dielectric strength and flexural strength of the relaxor so that its strength becomes comparable with modified BaTiO3, and could obtain comparable dielectric properties in comparison with conventional sintering process. Microwave processing has many advantages for sintering of relaxor ferroelectric ceramics used as multilayer capacitors.
基金supported by the National Natural Science Foundation of China(Grant Nos.61631166004 and 51902245)Hong Wang acknowledged the support of Shenzhen Science and Technology Program(Nos.KQTD20180411143514543 and JSGGZD20220822095603006)。
文摘A series of high-k[(Na_(0.5)Bi_(0.5))_(x)Bi_(1-x)](W_(x)V_(1-x))O_(4)(abbreviated as NBWV(x value))solid solution ceramics with a scheelite-like structure are synthesized by a modified solid-state reaction method at the temperature range of 680-760 C.A monoclinic(0≤x<0.09)to tetragonal scheelite(0.09≤x≤1.0)structural phase transition is confirmed by X-ray difraction(XRD),Raman,and infrared(IR)analyses.The effect of structural deformation and order-disorder caused by Na^(+)/Bi^(3+)/W^(6+) complex substitution on microwave dielectric properties is investigated in deail.The compositional series possess a wide range of variable relative permittivity(er=24.8-80)and temperature coefficient of resonant frequency(TCF value,-271.9-188.9 ppm/℃).The maximum permittivity of 80 and a high Qxf value of~10,000 GHz are obtained near the phase boundary at x=0.09.Furthermore,the temperature-stable dielectric ceramics sintered at 680 C with excellent microwave dielectric properties of ε_(r)=80.7,Qxf=9400 GHz(at 4.1 GHz),and TCF value=-3.8 ppm/℃ are designed by mixing the components of x=0.07 and 0.08.In summary,similar sinterability and structural compatibility of scheelite-like solid solution systems make it potential for low-temperature co-fired ceramic(LTCC)applications.
基金supported by National Natural Science Foundation of China(Grant No.11774366)International Partnership Program of Chinese Academy of Sciences(Grant No.GJHZ1821)。
文摘Glass-free MgO-based microwave dielectric ceramics(1-x)wt%(0.98 MgO-0.02 Al2O3)-x wt%LiF(x=0.5,1,2,3,4)were synthesized where LiF and Al2O3 were utilized as sintering additive and reinforcement phase in MgO matrix respectively.It was found that ion substitution is apt to occur between LiF and MgO,leading to the formation of oxygen vacancies and MgF2.Nevertheless,different from ordinary liquidphase sintering,morphologies of ceramics were distinctly altered with grains changing from polyhedron to sphere-like shape and densities underwent obvious decrease when excessive amount of LiF was introduced and we call it excessive liquid-phase sintering.Grain boundary weakening caused by this circumstance would exert an adverse effect on physical properties.Moreover,LiF addition dramatically reduced dielectric breakdown strength and altered the dielectric breakdown behavior of MgO-based ceramics,which is dominated by electrical breakdown mechanism.Combination of good properties were achieved in 1 wt%LiF modified MgO-based ceramics sintered at 950℃ which exhibited superior microwave properties(εr=9.56,tanδ=9.2×10^(-5),Qf=124,600 GHz),high flexural strength(184.5 MPa),high thermal conductivity(21.3 W/(m,K)),high coefficient of thermal expansion(-12 ppm/℃)and moderate electrical properties(Eb=35.9 kV/mm,r=4.9×10^(12) U cm).
基金Project supported by Anhui Provincial Natural Science Foundation(1608085ME92)
文摘0.5 Ca(0.6La0.267TiO3-0.5 Ca(Mg1/3Nb2/3)O3(5 CLT-5 CMN) ceramics were prepared by a reaction-sintering process and their sintering characteristics, microwave dielectric properties were investigated in detail.Without any calcination stage involved,a mixture of CaCO_3, La_2 O_3, TiO_2, MgO and Nb_2 O_5 was pressed and sintered directly. Pure phase 5 CLT-5 CMN ceramics with high density and dense microstructure can be obtained after sintered at 1400 ℃ for 4 h. Compared with those prepared by the conventional ceramic route, 5 CLT-5 CMN ceramics produced by the reaction-sintering process exhibit slightly higher dielectric constant and Q×f value. Fine microwave dielectric properties of ε_r= 56.4, Q×f= 48,550 GHz and T_f = +8.7 ppm/℃ for 5 CLT-5 CMN ceramics sintered at 1400 ℃ for 4 h are obtained, suggesting reactionsintering process is a simple and efficient method to produce pure phase 5 CLT-5 CMN ceramics as a potential candidate for the fabrication of microwave devices.
基金supported by the National Natural Science Foundation of China(Nos.61761015 and 12064007)the Natural Science Foundation of Guangxi(Nos.2018GXNSFFA050001,2017GXNSFDA198027,and 2017GXNSFFA198011)High Level Innovation Team and Outstanding Scholar Program of Guangxi Institutes.
文摘This study investigates the bulk density,sintering behaviour,and microwave dielectric properties of the MgO-2B_(2)O_(3) series ceramics synthesised by solid-state reaction.According to the X-ray diffraction and microstructural analyses,the as-prepared MgO-2B_(2)O_(3) ceramics possess a single-phase structure with a rod-like morphology.The effects of different quantities of H_(3)BO_(3) and BaCu(B_(2)O5)(BCB)on the bulk density,sintering behaviour,and microwave dielectric properties of the MgO-2B_(2)O_(3) ceramics were investigated.Accordingly,the optimal sintering temperature was obtained by adding 30 wt%H_(3)BO_(3) and 8 wt%BCB.We also reduced the sintering temperature to 825°C.Furthermore,the addition of 40 wt%H_(3)BO_(3) and 4 wt%BCB increased the quality factor,permittivity,and temperature coefficient of resonance frequency of MgO-2B_(2)O_(3) to 44,306 GHz(at 15 GHz),5.1,and-32 ppm/℃,respectively.These properties make MgO-2B_(2)O_(3) a viable low-temperature co-fired ceramic with broad applications in microwave dielectrics.
基金Project supported by the Sci-Tech Development Support Program of Jiangsu Province (BE2008653)Major Basic Research Project of Natural Science Foundation of Jiangsu Provincial Education Department (08KJA430005)
文摘The sintering behavior,microstructure and microwave dielectric properties of (1–x)CaTiO3–xLaAlO3 (x=0.1,0.3,0.5,0.7,0.9,respectively) ceramics were investigated systematically by thermogravimetry-differential thermal analysis (TG-DSC),X-ray diffraction (XRD),scanning electron microscopy (SEM) and a network analyzer.The result showed that forming temperature of the perovskite type crystal increased with increasing of x value.0.9CaTiO3-0.1LaAlO3 ceramics were sintered well from 1 400 to 1 550 oC,its bulk density increased with sintering temperature,and microwave dielectric properties of the ceramics at 1 400 oC was shown as follows: relative dielectric constant εr= 45.1,Q×f= 46 087 GHz and τf=–14.1×10–6/oC,respectively.But 0.7CaTiO3-0.3LaAlO3 ceramics were sintered well only when sintering temperature rose to 1 500 oC.(1–x)CaTiO3–xLaAlO3 (x=0.5,0.7 and 0.9,respectively) were not sintered well up to 1 550 oC and the sintered samples exhibited porous characteristic and with low bulk density.
基金support from the National Natural Science Foundation of China (Grant No.51402235)China Postdoctoral Science Foundation (2015M582696)+2 种基金Science and Technology Plan Project of Xi’an Bureau of Science and Technology (GXYD17.19)Education Department of Shaanxi Province (18JK0711)Innovation Funds of Graduate Programs of Xi’an University of Posts and Telecommunications (CXJJLD2019020)
文摘The non-stoichiometric Li_(3)Mg_(2)Sb_(1-x)O_(6)(0.05≤x≤0.125)compounds have been prepared via the mixed oxide method.The influences of Sb nonstoichiometry on the sintering behavior,microstructure,phase composition along with microwave dielectric performances for Li_(3)Mg_(2)Sb_(1-x)O_(6) ceramics were studied.Combined with X-ray diffraction(XRD)and Raman spectra,it was confirmed that phase composition could not be affected by the Sb nonstoichiometry and almost pure phase Li_(3)Mg_(2)SbO_(6) was formed in all compositions.Appropriate Sb-deficiency in Li_(3)Mg_(2)SbO_(6) not only lowered its sintering temperature but also remarkably improved its Q×f value.In particular,non-stoichiometric Li_(3)Mg_(2)Sb_(0.9)O_(6) ceramics sintered at 1250℃/5 h owned seldom low dielectric constant ε_(r)=10.8,near-zero resonant frequency temperature coefficient τ_(f)=-8.0 ppm/℃,and high quality factor Q×f=86,300 GHz(at 10.4 GHz).This study provides an alternative approach to ameliorate its dielectric performances for Li_(3)Mg_(2)SbO_(6)-based compounds through defect-engineering.
基金supported by National Key Research and Development Program of China under Grant No.2017YFB0406301Natural Science Foundation of Zhejiang Province under Grant No.LY17E020004.
文摘With the rapid development of mobile communication technology towards 5G and 6G,the microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are urgently demanded.Here,the excellent microwave dielectric properties are reported in H3BO3 ceramics with the molecular crystal structure,whose permittivity(2.84)and density(1.46 g/cm^(3))are record-low among the low-loss ceramics.The ultra-high Qf value of 146,000 GHz(or the ultra-low dielectric loss of 1.03×10^(-4) at 15 GHz)is also distinguished.Besides,the H_(3)BO_(3) ceramics can be densified at room temperature by a simple cold sintering process in a short time of 10 min,and this brings many advantages for the integration with microwave circuits.The large molecule volume originating from the molecular crystal structure and the low dielectric polarizabilities of H^(+) and B^(3+) are responsible for the ultra-low permittivity of H_(3)BO_(3) ceramics,and more microwave dielectric materials with ultra-low permittivity and ultra-high Qf value are expected to be explored in the molecular crystals.
文摘In this paper,the BaO-0.6ZnO-xTiO2 ceramics with x=2.5-2.8 have been prepared by the conventional solid-state ceramic route for the purpose of investigating the effect of TiO2 content on the microwave dielectric properties.The XRD results showed that the main crystal phase in the sintered ceramics was Ba4ZnTi11O27 and that the additional phases:Ba2ZnTi5O13 and BaZn2.03Ti3.93O10.89 were presented,depending on the TiO2 contents.The SEM photographs of the samples sintered at 1200℃ for 2 h showed a high compact microstructure.Because the phase composition of ceramics samples was changed with TiO2 content,the dielectric constant(εr),the quality factor values(Q×f) and the temperature coefficient of resonant frequency(τf) were first increased,continuously came up to a peak value,and then let up.It was lucky to find that the sample with composition BaO-0.6ZnO-2.7TiO2 had both the maximum dielectric constant εr=36.1 and the maximum Q×f value of 29320 GHz,and more importantly,it had an acceptable temperature coefficient of resonant frequency τf=10.45 ppm/℃.
基金This work was supported by Shandong Postdoctoral Innovative Talents Support Plan(No.SDBX2020010)the National Natural Science Foundation of China(No.U1806221)+2 种基金Shandong Provincial Natural Science Foundation(No.ZR2020KA003)the Project of“20 Items of University”of Jinan(No.2019GXRC017)This work was also supported by the National Natural Science Foundation of China(No.51972143).
文摘Dense microwave dielectric ceramics of Ce_(2)[Zr_(1−x)(Al_(1/2)Ta_(1/2))_(x)]_(3)(MoO_(4))_(9)(CZMAT) (x = 0.02–0.10) were prepared by the conventional solid-state route. The effects of (Al1/2Ta1/2)^(4+) on their microstructures, sintering behaviors, and microwave dielectric properties were systematically investigated. On the basis of the X-ray diffraction (XRD) results, all the samples were matched well with Pr_(2)Zr_(3)(MoO_(4))_(9) structures, which belonged to the space group R3¯c. The lattice parameters were obtained using the Rietveld refinement method. The correlations between the chemical bond parameters and microwave dielectric properties were calculated and analyzed by using the Phillips—Van Vechten—Levine (P—V—L) theory. Excellent dielectric properties of Ce_(2)[Zr_(0.94)(Al_(1/2)Ta_(1/2))_(0.06)]_(3)(MoO_(4))_(9) with a relative permittivity (ε_(r)) of 10.46, quality factor (Q × f) of 83,796 GHz, and temperature coefficient of resonant frequency (τ_(f)) of −11.50 ppm/℃ were achieved at 850 ℃.
文摘Ceramic samples of(Bi_(1-x)Pb_(x))NbO_(4)(x=0,0.025,0.05,0.10,0.15,0.20)with 0.75 wt.%V2O5 addition sintered at 920℃,940℃ and 960℃ are investigated.Pb is selected as a substitute for Bi^(3+)in BiNbO_(4) ceramics as it exists in two stable valence states of+2 and+4 and the average valency matches to that of Bi^(3+).The average Shannon radius(for octahedral coordination)of Pb^(2+)(1.19Å)and Pb^(4+)(0.775Å)cations is 0.9825Å,which is similar to that of Bi^(3+)ion(1.03Å).The dense(>94%)polycrystalline(Bi_(1-x)Pb_(x))NbO_(4) samples fabricated mostly reveal orthorhombic(Pnna)phase(α-BiNbO_(4),Sp.Gp.52)by powder XRD.Presence of satellite Pb2Nb2O7 phase,the amount of which is increasing with increase in Pb content,is also noticed.The microwave dielectric constant(ε'r)values of the niobates are found to increase from 42 to 71,whereas the quality factor(Qu.f)values are found to decrease from 5400 to 550 GHz with increasing substitution of Pb.The compositions so synthesized are important as hardly there are any microwave dielectric ceramics available with 45<ε'r<75.