期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
Biomass Carbon Improves the Adsorption Performance of Gangue-Based Ceramsites:Adsorption Kinetics and Mechanism Analysis
1
作者 Haodong Li Huiling Du +5 位作者 Le Kang Yewen Zhang Tong Lu Yuchan Zhang Lan Yang Shijie Song 《Journal of Renewable Materials》 EI 2023年第12期4161-4174,共14页
The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this s... The large accumulation of coal gangue,a common industrial solid waste,causes severe environmental problems,and green development strategies are required to transform this waste into high-value-added products.In this study,low-cost ceramsites adsorbents were prepared from waste gangue,silt coal,and peanut shells and applied to remove the organic dye methylene blue from wastewater.We investigated the microstructure of ceramsites and the effects of the sintering atmosphere,sintering temperature,and solution pH on their adsorption performance.The ceramsites sintered at 800℃under a nitrogen atmosphere exhibited the largest three-dimensional-interconnected hierarchical porous structure among the prepared ceramsites;further,it exhibited the highest methylene blue adsorption performance,with an adsorption capacity of 0.954 mg·g^(−1),adsorption efficiency of over 95%,and adsorption equilibrium time of 1 h at a solution pH of 9.The removal efficiency remained greater than 75%after five adsorption cycles.The adsorption kinetics data were analyzed using various models,including the pseudosecond-order kinetic model and Langmuir equation,and the adsorption was attributed to electrostatic interactions between the dyes and ceramsites,n-interactions,and hydrogen bonds.The prepared coal gangue ceramsites exhibited excellent adsorption capacities,removal rates,and cyclic stabilities,demonstrating their promising application prospects for the comprehensive utilization of solid waste and for wastewater treatment. 展开更多
关键词 Porous ceramsites ADSORPTION biological carbon kinetic analysis adsorption mechanism
下载PDF
Preparation of Lightweight Alumina-silica Castables by Replacing Closed-cell Perlite Aggregates with Coal Gangue Ceramsites
2
作者 ZAN Wenyu MA Beiyue 《China's Refractories》 CAS 2023年第3期20-25,共6页
Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica... Lightweight alumina-silica castables were prepared using closed-cell perlite(2-4 mm),open-cell perlite(4-6 mm)and coal gangue ceramsites(2-5 mm)as aggregates,floating beads(0.3-0.5 mm),sinking beads(0.6-0.8 mm),silica micropowder,α-Al_(2)O_(3) micropowder,zirconia and zircon micropowder as fines,and Secar 71 cement(calcium aluminate cement)as the binder.The effects of the coal gangue ceramsites addition(0,6%,12%,18%and 24%,by mass)on the properties of the as-prepared lightweight alumina-silica castables were investigated.The results show that:(1)the addition of coal gangue ceramsites can reduce the sintering shrinkage of the specimens and help to improve the strength and thermal shock resistance;(2)the samples with the addition of coal gangue ceramsites can produce pores in the matrix of the sintered samples,which provides enough space for the growth of CA6 complex solid solution and expands the irregular lamellar structure;(3)with the addition of coal gangue ceramsites increasing,the linear shrinkage of the samples heat treated at 1000 or 1200℃firstly reduces and then increases,the bulk density increases and the apparent porosity decreases;the cold compression strength and the thermal shock resistance of the specimens heat treated at 1200℃firstly increase and then decrease.Thus,the optimal addition of coal gangue ceramsites is 18%. 展开更多
关键词 alumina-silica castables closed-cell perlite coal gangue ceramsites comprehensive performance
下载PDF
Study on Fly Ash Based Porous Ceramsite as Biological Filter Media
3
作者 Ruigang WANG Shuo WANG +1 位作者 Weijie LI Hailong LIU 《Agricultural Biotechnology》 2024年第1期71-73,共3页
Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials... Using fly ash as a raw material,porous ceramic particles with an apparent density of 1.21 g/cm^(3),a visible porosity of 51.03%,and a specific surface area of 4.26 m^(2)/g were prepared and used as biofilter materials for wastewater treatment.Through SEM,XRD analysis,and heavy metal leaching analysis,it was found that porous ceramsite were porous materials with rough surfaces.After calcination,the newly formed mineral was silicate calcium feldspar.The heavy metal concentration in the leaching solution of porous ceramsite met the national surface water quality requirements.The treatment of domestic sewage showed that the volumetric loads of COD Cr,NH_(4)^(+)-N,and TN removed by the aerated biofilter were 5.23,0.98,and 0.35 kg/(m^(3)·d),respectively,with removal rates of 85.46%,96.13%,and 32.31%. 展开更多
关键词 Porous ceramsite Domestic sewage Fly ash
下载PDF
Ca^(2+) and OH^- release of ceramsites containing anorthite and gehlenite prepared from waste lime mud 被引量:5
4
作者 Juan Qin Chuanmeng Yang +3 位作者 Chong Cui Jiantao Huang Ahmad Hussain Hailong Ma 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2016年第9期91-99,共9页
Lime mud is a kind of solid waste in the papermaking industry,which has been a source of serious environmental pollution.Ceramsites containing anorthite and gehlenite were prepared from lime mud and fly ash through th... Lime mud is a kind of solid waste in the papermaking industry,which has been a source of serious environmental pollution.Ceramsites containing anorthite and gehlenite were prepared from lime mud and fly ash through the solid state reaction method at 1050°C.The objective of this study was to explore the efficiency of Ca^2+ and OH-release and assess the phosphorus and copper ion removal performance of the ceramsites via batch experiments,X-ray diffraction(XRD) and scanning electron microscopy(SEM).The results show that Ca^2+ and OH-were released from the ceramsites due to the dissolution of anorthite,gehlenite and available lime.It is also concluded that gehlenite had stronger capacity for Ca^2+ and OH-release compared with anorthite.The Ca^2+ release could be fit well by the Avrami kinetic model.Increases of porosity,dosage and temperature were associated with increases in the concentrations of Ca^2+ and OH-released.Under different conditions,the ceramsites could maintain aqueous solutions in alkaline conditions(p H = 9.3–10.9) and the release of Ca^2+ was not affected.The removal rates of phosphorus and copper ions were as high as 96.88% and 96.81%,respectively.The final p H values of both phosphorus and copper ions solutions changed slightly.The reuse of lime mud in the form of ceramsites is an effective strategy. 展开更多
关键词 Lime mud Ceramsite Gehlenite Calcium ion PH value
原文传递
Effects of Different Calcining Temperatures on the Properties of Ceramsite Prepared by High-carbon Gasification Slag
5
作者 WU Feng LI Hui +1 位作者 LI Taizhi MA Xudong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期292-298,共7页
The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential ... The structure and characteristics of high-performance lightweight aggregates produced by high-carbon gasification slag were investigated by X-ray diffraction,scanning electron microscopy,thermogravimetry/differential thermogravimetr,differential scanning calorimetry-Fourier transform infrared,and mercury intrusion porosimetry,respectively.The experimental results show that the ceramsite undergoes two weightless stages in the calcining process.With the increase in the calcining temperature,a large number of pores are formed inside the ceramsite,its structure becomes denser,but the calcining temperature band of the ceramsite becomes narrow.The crystalline phase of the ceramsite changes at different calcining temperatures and the mineral phase changes from the earlieralbite,quartz,oligoclase,hematite,etc,to a silica-aluminum-rich glass phase.The 1130℃ is a more suitable calcining temperature,and the cylinder compressive strength of ceramics is 11.59 MPa,the packing density,apparent density,porosity,and water absorption are 939.11 kg/m^(3),1643.75 kg/m^(3),28.11%,and 10.35%,respectively,which can meet the standards for high-strength lightweight aggregates. 展开更多
关键词 high-carbon gasification slag CERAMSITE CONCRETE physical property
下载PDF
Workability and Strength of Ceramsite Self-Compacting Concrete with Steel Slag Sand
6
作者 Suiwei Pan Anqi Ren +4 位作者 Yongli Peng Min Wu Wanguo Dong Chunlin Liu Depeng Chen 《Journal of Renewable Materials》 SCIE EI 2023年第2期881-904,共24页
This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the en... This study focuses on the workability and compressive strength of ceramsite self-compacting concrete with fine aggregate partially substituted by steel slag sand(CSLSCC)to prevent the pollution of steel slag in the environment.The SF,J-ring,visual stability index,and sieve analysis tests are primarily employed in this research to investigate the workability of freshly mixed self-compacting concrete containing steel slag at various steel slag sand replacement rates.The experiment results indicate that CSLSCC with the 20%volume percentage of steel slag(VPS)performs better workability,higher strength,and higher specific strength.The 7-day compressive strength of CSLSCC with the 0.4 of the water-binder ratio(W/B),decreases with the increase of steel slag content,while the 28-day compressive strength increases significantly.The ceramsite self-compacting concrete with good comprehensive performance can be obtained when the substitution rate of steel slag sand for fine aggregate is less than 20%(volume percentage). 展开更多
关键词 Steel slag CERAMSITE self-compacting concrete WORKABILITY compressive strength
下载PDF
Ceramsite Containing Iron Oxide and its Use as Functional Aggregate in Microwave Absorbing Cement-based Materials 被引量:5
7
作者 何永佳 LI Guangfeng +2 位作者 李洪斌 Lü Linnü HE Liu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第1期133-138,共6页
Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-ba... Electromagnetic(EM) wave absorbing cement-based composite has promising applications in protecting civil and military buildings from electromagnetic interferences. A new idea of preparing EM wave absorbing cement-based composite is proposed by using ceramsite containing iron oxide as EM wave absorbing functional aggregate. The ceramsite was synthesized by adding 10 wt% Fe3O4 into clay and sintering at 1 200 ℃, which shows obvious dielectric and magnetic loss properties for electromagnetic wave. The maximum reflection loss(RL) of the concrete specimens prepared with the ceramsite is between-10.2--10.7 dB(corresponding to absorption greater than 90% EM energy) in the bandwidth of 8-18 GHz. In addition, the compressive strength at 28 days age of the concrete is 46 MPa, showing the potentiality of being used as structural components in buildings. 展开更多
关键词 electromagnetic absorption iron oxide CERAMSITE functional aggregate concrete
下载PDF
Preparation and Microstructure of Green Ceramsite Made from Sewage Sludge 被引量:5
8
作者 柳俊哲 LIU Rui +2 位作者 HE Zhimin BA Mingfang 李玉顺 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第1期149-153,共5页
A pilot study was conducted to produce high performance green ceramsite by using sewage sludge, fly ash and silt. According to the theory of Riley, the proportions of raw materials were chosen to perform the sintering... A pilot study was conducted to produce high performance green ceramsite by using sewage sludge, fly ash and silt. According to the theory of Riley, the proportions of raw materials were chosen to perform the sintering experiments. Thereby, the optimum proportion of sludge, fly ash and silt and sintering parameters were determined. The microstructure of the optimized mixture and the leaching of heavy metal elements were also analyzed. The lab testing results show that sintering parameters have significant impact on the performance of ceramsite. For solid waste ceramsite with high loss of ignition, inadequate pre-burning process lowers the strength and increases the water absorption. Low water absorption can be achieved by the enameled surface and closed pore structure. The high performance green ceramsite has the density grade of 700, water absorption of 6% and compressive strength of 6.6 MPa. The ceramsite is mainly composed of cristobalite and mullite. The leaching of heavy metal elements from the solid waste ceramsite are lower than the limits required by the national standard. This study shows that the utilization of solid waste ceramsite as the light Weight aggregate is feasible and safe. 展开更多
关键词 CERAMSITE sewage sludge sintering parameters MICROSTRUCTURE
下载PDF
Effect of Ceramsite Structure on Microstructure of Interfacial Zone and Durability of Combined Aggregate Concrete 被引量:4
9
作者 孔丽娟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第1期145-149,共5页
Structure characteristics of three kinds of ceramsite with different water absorption and the influence on microstructure of interfacial zone as well as performance of chloride permeabil-ity and frost resistance of co... Structure characteristics of three kinds of ceramsite with different water absorption and the influence on microstructure of interfacial zone as well as performance of chloride permeabil-ity and frost resistance of combined aggregate concrete were investigated. The results show that, dense shell and closed internal pore have sharp effects on lowering water absorption of ceramsite. However, the ceramsite with high water absorption has obvious effect on the densification of interfa-cial paste which would develop a structure with lower porosity, finer aperture and higher microhard-ness. Furthermore, the impermeability and frost-resistance of concrete can be improved due to the ef-fect of water absorption and releasing by ceramsite with higher water absorption. 展开更多
关键词 CERAMSITE combined aggregate concrete chloride permeability frost resistance pore structure MICROHARDNESS
下载PDF
Preparation and Physical Properties of Ceramsite Filter Media for Water Treatment Obtained from Municipal Solid Wastes 被引量:5
10
作者 李天鹏 孙婷婷 +3 位作者 TALLAL Binaftab 李登新 林晓亮 李玉龙 《Journal of Donghua University(English Edition)》 EI CAS 2017年第1期38-43,共6页
Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge b... Sludge,solid waste of sewage treatment plants,poses a threat as a secondary pollution if it is not handled properly.In this study,artifical ceramsite filter material(ACFM)for water treatment,was obtained from sludge by high-temperature sintering process,and then it’s physical properties,leaching toxicity and sintering mechanisms were investigated.The results showed that the preferred conditions for the preparation of ACFM were that the mass ratio of sludge,river sediment and fly ash was 5∶4∶1,preheated at 400℃for 20 min and sintered at 1 150℃for 5 min.After the optimal sintering conditions treatment,the physical properties of the rate of breaking and wear,solubility in hydrochloric acid,silt carrying capacity,void fraction and Brunauer-Emmett-Teller(BET)specific surface area of ACFM were 0.2%,0.01%,0.2%,71.1%and 0.75×104cm2/g,respectively.The results confirmed that the ACFM’s physical properties were totally aligned to the requirements of China’s industry standard(CJ/T 299—2008).The leaching toxicity results indicated that the leaching contents of heavy metals,such as Cr,Zn and Cu,were much lower than the thresholds of China’s national standards(GB 5085.3—2007 and GB 8978—1996). 展开更多
关键词 ceramsite filter material raw materials formula sintering process physical property
下载PDF
Preparation and Bloating Mechanism of Porous Ultra-lightweight Ceramsite by Dehydrated Sewage Sludge and Yellow River Sediments 被引量:7
11
作者 岳东亭 岳钦艳 +6 位作者 GAO Baoyu HE Hongtao YU Hui SUN Shenglei LI Qian WANG Yan ZHAO Yu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第6期1129-1135,共7页
To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments additi... To solve the disposal problems of solid wastes, dehydrated sewage sludge and Yellow River sediments were tested as components for production of ultra-lightweight ceramsite. The effects of Yellow River sediments addition on the characteristics of ceramsite were investigated. Ceramsite with different Yellow River sediments additions was characterized using thermal analysis, X-ray diffraction, morphological structures analyses, pore size distributions and porosity analyses. Chemical components, especially ratios of Si O2 + Al2O3/Flux, were used to explain the glassy shell formation, physical properties and pores distribution of ultralightweight ceramsite; physical forces for instance expansion force and frictional resistance which combined with Si O2 + Al2O3/Flux ratios were used to explain the bloating mechanism. Results showed that the maximum addition of Yellow River sediments for making ultra-lightweight ceramsite was 35%. Macropores(between 0.226 μm and 0.554 μm) of ultra-lightweight ceramsite were dominant in the pore structures of ultra-lightweight ceramsite and its porosity was up to 67.7%. Physical force of expansion force was constant with the variation of Yellow River sediments content and physical force of frictional resistance was decreased with the increase of Yellow River sediments addition. The relationship between expansion and frictional resistance could determine the expansion rate of ceramsite. Larger pores inside the ceramsite bodies could be obtained as Yellow River sediments additions ranged from 10% to 30%. Ceramsite with higher Yellow River sediments additions of 40%(Si O2 + Al2O3/Flux ratios 4.25) became denser and have lower porosity. Crystal components analysis proved that the sintering process made some components of raw materials transfer into other crystals having better thermostability. 展开更多
关键词 yellow river sediments dehydrated sewage sludge ultra-lightweight ceramsite bloating mechanism
下载PDF
Effect of Thermal Regeneration on the Breakthrough Performance of Ceramsite Saturated with Methylene Blue 被引量:2
12
作者 Tianpeng Li Ting Li 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2020年第5期87-96,共10页
The regeneration of a spent packing is crucial with respect to the development of circular economy and abstemious society.Thus,the effects of regeneration temperature,resistant time,heating rate,and regeneration cycle... The regeneration of a spent packing is crucial with respect to the development of circular economy and abstemious society.Thus,the effects of regeneration temperature,resistant time,heating rate,and regeneration cycle on the breakthrough performance of methylene blue(MB)dye⁃exhausted ceramsite in a two⁃stage fixed⁃bed column were studied in this work.Results illustrate that the ceramsite exhibited excellent potential regeneration properties under the following optimal regeneration conditions:treatment temperature was 600°C,resistant time was 15 min,heating rate was 20℃/min,regeneration cycle was over 9 cycles,and the breakthrough time,saturation time,regeneration efficiency(RE),and regeneration loss rate(RLR)were 540 min,1020 min,64.61%,and 17.73%,respectively.The RE declined by 35.14%in over 1 cycle,while the RLR increased by 3.15 times in over 9 cycles.Besides,Thomas model was suitable to describe the two⁃stage fixed⁃bed column adsorption and thermal regeneration process with R2=0.978.In conclusion,a thorough understanding of the regeneration behavior of the two⁃stage fixed⁃bed column packed with ceramsite provides reference to obtain an effective and feasible regeneration approach,and it is beneficial for further application in water treatment. 展开更多
关键词 CERAMSITE thermal regeneration two⁃stage fixed⁃bed column breakthrough performance Thomas model
下载PDF
Versatile Surface Modification of Ceramsite Via Honeycomb Calcium-aluminum-silicate-hydrate and Its Functionalization by 3-thiocyanatopropyltriethoxysilane for Enhanced Cadmium(Ⅱ) Removal 被引量:1
13
作者 赵都 刘鹏 +2 位作者 WANG Fazhou HU Chuanlin HU Shuguang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期71-80,共10页
A low-cost and efficient filter medium for Cd(Ⅱ) removal was prepared by anchoring-SCN functional groups(by 3-thiocyanatopropyltriethoxysilane, TCPS) on ceramsite via the approach of synthesizing a honeycomb calciuma... A low-cost and efficient filter medium for Cd(Ⅱ) removal was prepared by anchoring-SCN functional groups(by 3-thiocyanatopropyltriethoxysilane, TCPS) on ceramsite via the approach of synthesizing a honeycomb calciumaluminum-silicate-hydrate(C-A-S-H) layer as intermediate. The specific surface area of ceramsite was increased enormously by more than 50 times because of the modification of honeycomb layer. Moreover, the abundant Si-OH bonds existing in the structure of CAS-H can serve as active sites for TCPS. The combined effects ensure that the hybrid filter medium(named ceramsite/C-A-S-H/TCPS) demonstrated a high Cd(Ⅱ) adsorption capacity of 18.27 mg·g^-1 for particle size of 0.1-0.6 mm, 12.63 mg·g^-1 for 0.6-1.25 mm and 8.64 mg·g^-1 for 1.25-2.35 mm. The Cd(Ⅱ) adsorption capacity per unit area of ceramsite/C-A-S-H/TCPS(0.1-0.6 mm) is up to 4.07 mg·m^-2, which is much higher than that of many nano-adsorbents. In addition, ceramsite/C-AS-H/TCPS could maintain a high removal efficiency(> 85%) in a wide range of p H 3-11 and showed excellent selectivity in the presence of competing ions. Furthermore, Cd(Ⅱ) could be desorbed from ceramsite/C-A-S-H/TCPS composites with nearly 100%, suggesting the potential application in recycling of heavy metal ions. 展开更多
关键词 HONEYCOMB C-A-S-H 3-thiocyanatopropyltriethoxysilane CERAMSITE amorphous silica Cd(Ⅱ) REMOVAL
下载PDF
Influence of resin flow on shrinkage of additive manufacturing coated sand molds 被引量:1
14
作者 shu-ming zhao shan yao tong yang 《China Foundry》 SCIE 2018年第4期291-298,共8页
Coated sands are used extensively for additive manufacturing sand molds in the metal casting process, and the packing structure changes caused by the resin flow promote the shrinkage and deformation of the part. Durin... Coated sands are used extensively for additive manufacturing sand molds in the metal casting process, and the packing structure changes caused by the resin flow promote the shrinkage and deformation of the part. During the coated sand heating, the resin on the surface flowing to the contact points of the particles forms the resin neck and causes particles to pack close to each other. In this work, the diameters of the coated ceramsite sand before and after heating were measured based on in-situ experimental observations with image measuring apparatus and blue laser, to obtain the relationship between resin coating thickness and the particle diameter. The particle packing model was established to describe the particles' achievement of a stable state one by one. A re-packing simulation was then performed after reducing the particle diameter according to the resin coating thickness, to obtain the shrinkage ratios at different particle size distributions. It was found that the resin coating thickness increased from 0.8 to 2.3 μm as the particle diameter increased from 107 to 500 μm, for the coated ceramsite sand with the resin content of 2 wt.%; the shrinkage ratio decreased first and then increased as the particle diameter increased. The experimental minimum shrinkage ratio was 3.28%, and the corresponding particle diameter was 300-375 μm, while the minimum shrinkage ratio obtained by simulation was 3.43%, and the corresponding particle diameter was 214-300 μm. After mixing the five groups proportionally, the shrinkage ratios of the simulation and experiment dropped to 2.81% and 3.04%, respectively, indicating the best results. 展开更多
关键词 coated ceramsite sand resin coating thickness particle packing shrinkage ratio additive manufacturing
下载PDF
Preparation and Properties of High-strength Ceramsite in Low Water Absorption
15
作者 邓宏卫 杨英姿 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第S1期135-139,共5页
Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-... Fly ash used as the main raw materials,incorporated with sintering expansion additive and fluxing additive in different ratio,was sintered high-strength lightweight aggregates of fly ash (ceramsite) in the laboratory-controlled electric furnace.The results show that the optimal sintering system is the sintering temperature range of 1250 ℃ to 1280 ℃ and retaining time of 5 min-10 min.The bulk density,the apparent density and 24 h water absorption of ceramsites decrease with the increase of sintering additive and the decrease of the amount of fly ash.The addition of fluxing additive can significantly enhance the compressive strength of ceramsite pellets,reduce its water absorption at 24 h and improve pore-shape ofinner structure.The firing coefficient (Pk) changed within 7.8-8.1 of raw materials can prepare high strength and low water absorption ceramsites.Pk kept a good linear relationship with porosity and strength of ceramsite particles. 展开更多
关键词 fly ash CERAMSITE sintering expansion additive fluxing additive
下载PDF
A New Kind of Roof Greening System in China
16
《环境科学前沿(中英文版)》 2015年第2期29-38,共10页
With the wider use of green roofs, new technology and new materials are being applied to the field of building roof greening forbuildings. This paper introduces BRGS (built- up roof greening system), a new type of r... With the wider use of green roofs, new technology and new materials are being applied to the field of building roof greening forbuildings. This paper introduces BRGS (built- up roof greening system), a new type of roof greening system that differs from roofgreening systems currently used in China in that it integrates a main and an auxiliary water storage capacity into the roof greeningsystem. Compared to other systems currently in use, BRGS offers a simpler, quicker, less labor intensive construction process;lighter floor load; and lower long term maintenance requirements and costs. It also makes full use of rainwater and snowmelt,which provides a significant amount of water to plants. This paper also introduces a planting experiment, the results of whichindicate that plants during their early stages of growth tolerate an alkaline environment, and that after a period of time, the pHvalue level of water stored in BRGS approaches 8.3, so we can conclude that BRGS is suitable for construction engineering. 展开更多
关键词 ROOF GREENING BUILT-UP ROOF GREENING SYSTEM PLANTING Experiment Shale CERAMSITE Concrete Finite Element
下载PDF
Research on casing deformation prevention technology based on cementing slurry system optimization
17
作者 Yan Yan Meng Cai +3 位作者 Wen-Hai Ma Xiao-Chuan Zhang Li-Hong Han Yong-Hong Liu 《Petroleum Science》 SCIE EI CAS 2024年第2期1231-1240,共10页
The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture ... The casing deformation prevention technology based on the optimization of cement slurry is proposed to reduce the casing deformation of shale oil and gas wells during hydraulic fracturing. In this paper, the fracture mechanism of hollow particles in cement sheath was firstly analyzed by discrete element method, and the effect of hollow particles in cement on casing deformation was investigated by laboratory experiment method. Finally, field test was carried out to verify the improvement effect of the casing deformation based on cement slurry modification. The results show that the formation displacement can be absorbed effectively by hollow particles inside the cement transferring the excessive deformation away from casing. The particles in the uncemented state provide deformation space during formation slipping. The casing with diameter of 139.7 mm could be passed through by bridge plug with the diameter of 99 mm when the mass ratio of particle/cement reaches 1:4. According to the field test feedback, the method based on optimization of cement slurry can effectively reduce the risk of casing deformation, and the recommended range of hollow microbeads content in the cement slurry is between 15% and 25%. 展开更多
关键词 Cement slurry Hollow ceramsite Casing deformation Formation slip Field test
下载PDF
Preparation of gangue ceramsite by sintering pot test and potential analysis of waste heat recovery from flue gas 被引量:1
18
作者 Yi Huang Xiang-jie Duan +1 位作者 Yu Li Wei Zhang 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第7期1401-1410,共10页
Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and re... Preparation of ceramsite from solid waste based on the sintering process is a new technology and had a high efficiency in improving producing capability, decreasing consumption of liquefied petroleum gas (LPG), and recovering waste heat of flue gas. An experiment sintering gangue ceramsite was conducted in a 25 kg scale sintering pot with a 100 cm height. The combustion characteristics, phase transformation, and the release profile of SO_(2)^(*) (SO and/or SO_(2)) and NO_(x)^(*) (N_(2)O, NO, and/or NO_(2)) of gangue ceramsite during the sintering process were studied by X-ray diffraction analysis, X-ray fluorescence spectrometry, thermogravimetry–differential thermogravimetry–differential scanning calorimetry, and measurement of physical properties of ceramsite and gas components of flue gas. The results showed that the gangue ceramsite had excellent properties, and its compressive strength and water absorption were 8.2–9.6 MPa and 8.9%–9.8%, respectively, far exceeding the requirement of standard (GB/T 17431.1–2010). The ignition temperature of gangue ceramsite was 443 ℃, and the ignition loss was 14.60 mass% at 1000 ℃. Kaolinite and calcite disappeared at 600 and 800 ℃, respectively. Albite disappeared and mullite formed at 1000 ℃. Two peaks of SO_(2)^(*) emissions emerged in the range of 311–346 mg m^(-3) near 500 ℃ of upper layer ceramsite and 420–489 mg m^(-3) near 1000 ℃ of lower layer ceramsite, respectively. NO_(x)^(*) emissions peak emerged in the range of 227–258 mg m^(-3) near 550 ℃ of the upper layer ceramsite, which was related to the oxidation of sulfide and the combustion of LPG. Gangue is a direct heat source for sintering of ceramsite as well. During sintering process, the heat of flue gas above and below 400 ℃ accounts for 55.9% and 30.0% of the all-output heat, respectively, and was potentially used for producing waste-heat steam or electricity as by-products and drying raw materials during its own initial sintering process, which can realize combined mass and heat utilization for the gangue and further reduce the cost of sintered gangue ceramsite. 展开更多
关键词 Gangue ceramsite COGENERATION SO_(2)^(*) NO_(x)^(*) Flue gas waste heat
原文传递
Process and property optimization of ceramsite preparation by Bayan Obo tailings and blast furnace slag
19
作者 Yi-fan Chai Wen-xian Hu +3 位作者 Yun-hao Zhang Yi-ci Wang Jun Peng Sheng-li An 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第7期1381-1389,共9页
The ceramsite was prepared by using Bayan Obo tailings and blast furnace slag of Baotou Steel as the main raw materials and coal gangue as pore-forming agent,and the process system and the performance of ceramsite wer... The ceramsite was prepared by using Bayan Obo tailings and blast furnace slag of Baotou Steel as the main raw materials and coal gangue as pore-forming agent,and the process system and the performance of ceramsite were optimized.The phase transformation rules of the ceramsite prepared by multi-source solid waste in sintering method were clarified.The influence of sintering process parameters on ceramsite performance and the purification effect of ceramsite on ammonia nitrogen wastewater were revealed.The results show that the reasonable proportion of raw materials for preparing ceramsite is 60%tailings,35%blast furnace slag and 5%coal gangue.The reasonable preparation process of ceramsite is preheating at 350℃ for 12 min,increasing the temperature to 750℃ and holding for 60 min,then increasing the temperature to 1130℃ and roasting for 20 min.The cooling method is to cool down with the furnace.The prepared ceramsite has compressive strength of 1.89 MPa,porosity of 51.31%,water absorption of 31.42%,and bulk density of 1.94 g/cm^(3).When the ceramsite is used to treat ammonia nitrogen wastewater,the removal rate of ammonia nitrogen is 47.33%. 展开更多
关键词 Bayan Obo tailing Blast furnace slag CERAMSITE Solid waste Comprehensive utilization
原文传递
Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution 被引量:30
20
作者 Cheng Jiang Liyue Jia +2 位作者 Bo Zhang Yiliang He George Kirumba 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期466-477,共12页
The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracit... The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracite, shale and biological ceramsite. These substrate samples were characterized by X- ray diffractometry and scanning electron microscopy studies for their mineral components (chemical components) and surface characteristics. The dynamic experimental results revealed the following ranking order for total phosphorus (TP) removal efficiency: anthracite 〉 biological ceramsite 〉 shale 〉 quartz sand. The adsorptive removal capacities for TP using anthracite, biological ceramsite, shale and quartz sand were 85.87, 81.44, 59.65, and 55.98 mg/kg, respectively. Phosphorus desorption was also studied to analyze the substrates' adsorption efficiency in wastewater treatment as well as the substrates' ability to be reused for treatment. It was noted that the removal performance for the different forms of phosphorus was dependent on the nature of the substrate and the adsorption mechanism. A comparative analysis showed that the removal of particulate phosphorus was much easier using shale. Whereas anthracite had the highest soluble reactive phosphorus (SRP) adsorptive capacity, biological ceramsite had the highest dissolved organic phosphorus (DOP) removal capacity. Phosphorus removal by shale and biological ceramsite was mainly through chemical adsorption, precipitation or biological adsorption. On the other hand, phosphorus removal through physical adsorption (electrostatic attraction or ion exchange) was dominant in anthracite and quartz sand. 展开更多
关键词 quartz sand anthracite shale biological ceramsite phosphorus constructed wetlands
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部