The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie...The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.展开更多
Early or ultra-early pharmacological thrombolysis together with mechanical thrombectomy are key treatments for ischemic stroke,and both are aimed at vascular recanalization and improved collateral circulation.While th...Early or ultra-early pharmacological thrombolysis together with mechanical thrombectomy are key treatments for ischemic stroke,and both are aimed at vascular recanalization and improved collateral circulation.While these methods enhance tissue perfusion in the ischemic penumbra,they also trigger complex neurotoxic reactions,including apoptosis,acidosis,ion imbalance,oxidative stress,and pyroptosis,exacerbating cerebral ischemia-reperfusion injury(CIRI).Pyroptosis,a recently discovered form of programmed cell death driven by inflammation,plays a significant role in neuronal death during CIRI.This study reviews the regulatory mechanisms of pyroptosis in CIRI.展开更多
Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage ...Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system.,and has accordingly been a focus of extensive clinical research.As a traditional Chinese medicinal formulation,Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases.Its main constituents include Citrus aurantium,Magnolia officinalis,rhubarb,and Qiangwu,which are primarily used to regulate qi.In the treatment of neurological diseases,the therapeutic effects of the Sanhua Decoction are mediated via different pathways,including antioxidant,anti-inflammatory,and neurotransmitter regu-latory pathways,as well as through the protection of nerve cells and a reduction in cerebral edema.Among the studies conducted to date,many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects.In addition,as a natural treatment,the Sanhua Decoction has received widespread attention,given that it is safer and more effective than traditional Western medicines.Consequently,research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance.In this paper,we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction.We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion,and provide a scientific basis for its application in clinical practice.展开更多
Background:Retinal ischemia/reperfusion(I/R)injury often results in vision loss,and effective clinical management options are currently lacking.Shikang granules(SKG)are traditional Chinese medicine-based preparations ...Background:Retinal ischemia/reperfusion(I/R)injury often results in vision loss,and effective clinical management options are currently lacking.Shikang granules(SKG)are traditional Chinese medicine-based preparations commonly used in clinical practice for treating optic atrophy.Methods:Despite decades of clinical use,the precise mechanism of action(MoA)of SKG remains elusive.Here,we employ a network pharmacological approach to elucidate its MoA by identifying active ingredients and relevant targets using the Traditional Chinese Medicine System Pharmacology Database and Analytical Platform.Targets associated with retinal I/R injury were sourced from GeneCards,Online Mendelian Inheritance in Man,and DisGeNET.Venny software facilitated the identification of intersecting targets,which were then subjected to gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis.To validate the protective effect and explore the MoA of SKG in retinal I/R injuries,we conducted experiments using rat models.Results:Our animal experiments demonstrated that SKG mitigated apoptosis following retinal I/R injury by upregulating the expression of the anti-apoptotic protein Bcl-2 and downregulating the expression of BAX,Caspase-9,Caspase-3,PARP,and cytochrome C.Additionally,SKG was found to increase the expression of PI3K and AKT.Conclusions:SKG may exert its protective effects by inhibiting apoptosis through modulation of pro-apoptotic and anti-apoptotic protein expression,as well as activation of the PI3K/AKT pathway.展开更多
Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and ...Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and reperfusion injury(I/R).The guidelines for CPR suggest the use of therapeutic hypothermia(TH)as an effective treatment to decrease mortality and the only approach confirmed to reduce I/R injury.During TH,sedative agents(propofol)and analgesia agents(fentanyl)are commonly used to prevent shiver and pain.However,propofol has been associated with a number of serious adverse effects such as metabolic acidosis,cardiac asystole,myocardial failure,and death.In addition,mild TH alters the pharmacokinetics of agents(propofol and fentanyl)and reduces their systemic clearance.For CA patients undergoing TH,propofol can be overdosed,leading to delayed awakening,prolonged mechanical ventilation,and other subsequent complications.Ciprofol(HSK3486)is a novel anesthetic agent that is convenient and easy to administer intravenously outside the operating room.Ciprofol is rapidly metabolized and accumulates at low concentrations after continuous infusion in a stable circulatory system compared to propofol.Therefore,we hypothesized that treatment with HSK3486 and mild TH after CA could protect the brain and other organs.展开更多
Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the pre...Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects.展开更多
The attenuation function of Dalbergia odorifera leaves on cerebral ischemia-reperfusion(I/R)is little known.The candidate targets for the Chinese herb were extracted from brain tissues through the high-affinity chroma...The attenuation function of Dalbergia odorifera leaves on cerebral ischemia-reperfusion(I/R)is little known.The candidate targets for the Chinese herb were extracted from brain tissues through the high-affinity chromatography.The molecular mechanism of D.odorifera leaves on cerebral I/R was investigated.Methods:Serial affinity chromatography based on D.odorifera leaves extract(DLE)affinity matrices were applied to find specific binding proteins in the brain tissues implemented on C57BL/6 mice by intraluminal middle cerebral artery occlusion for 1 h and reperfusion for 24 h.Specific binding proteins were subjected to mass-spectrometry to search for the differentially expressed proteins between control and DLE-affinity matrices.The hub genes were screened based on weighted gene co-expression network analysis(WGCNA).Then,predictive biology and potential experimental verification were performed for the candidate genes.The protective role of DLE in blood-brain barrier damage in cerebral I/R mice was evaluated by the leakage of Evans blue,western blotting,immunohistochemistry,and immunofluorescent staining.Results:952 differentially expressed proteins were classified into seven modules based on WGCNA under soft threshold 6.Based on WGCNA,AKT1,PIK3CA,NOS3,SMAD3,SMAD1,IL6,MAPK1,TGFBR2,TGFBR1,MAPK3,IGF1R,LRG1,mTOR,ROCK1,TGFB1,IL1B,SMAD2,and SMAD518 candidate hub proteins were involved in turquoise module.TGF-β,MAPK,focal adhesion,and adherens junction signaling pathway were associated with candidate hub proteins.Gene ontology analysis demonstrated that candidate hub proteins were related to the TGF-βreceptor signaling pathway,common-partner SMAD protein phosphorylation,etc.DLE could significantly reduce the leakage of Evans blue in mice with cerebral I/R,while attenuating the expression of occludin,claudin-5,and zonula occludens-1.Western blotting demonstrated that regulation of TGF-β/SMAD signaling pathway played an essential role in the protective effect of DLE.Conclusion:Thus,a number of candidate hub proteins were identified based on DLE affinity chromatography through WGCNA.DLE could attenuate the dysfunction of bloodbrain barrier in the TGF-β/SMAD signaling pathway induced by cerebral I/R.展开更多
Ischemic cerebrovascular disease is a leading cause of death globally and is often exacerbated by cerebral ischemic/reperfusion injury(CIRI).The exact mechanisms underlying I/R injury are unclear.In this study,we aime...Ischemic cerebrovascular disease is a leading cause of death globally and is often exacerbated by cerebral ischemic/reperfusion injury(CIRI).The exact mechanisms underlying I/R injury are unclear.In this study,we aimed to determine the role of m6A-modified methylase complex methyltransferase-like 3(METTL3)in cerebral ischemiareperfusion(I/R)injury.We found that m6A and METTL3 levels increased in OGD/RX-induced mouse astrocytescerebellar(MA-C)and the brain of middle cerebral artery occlusion(MCAO)model mice.METTL3 siRNA treatment reduced OGD-RX-induced MAC cell viability and proliferation,which increased with METTL3 over-expression.Flow cytometry analysis showed that silencing METTL3 significantly enhanced OGD/RX-induced MAC apoptosis,which was significantly reduced with METTL3 up-regulation.In an MCAO model,METTL3 overexpression significantly reduced cerebral infarction area and decreased brain cell apoptosis,indicating that METTL3 OE treatment could ameliorate brain edema and injury.Thus,METTL3 could be used as a target to treat I/R injury.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)funct...Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)functions as a molecular chaperone that helps stabilize protein structures.Methods:An IRI model was established by performing LT on Sprague-Dawley rats,and HSP110 was silenced using siRNA.Hematoxylin-eosin staining,TUNEL,immunohistochemistry,ELISA and liver enzyme analysis were performed to assess IRI following LT.Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to investigate the pertinent molecular changes.Results:Our findings revealed a significant increase in the expression of HSP110 at both the mRNA and protein levels in the rat liver following LT(P<0.05).However,when rats were injected with siRNAHSP110,IRI subsequent to LT was notably reduced(P<0.05).Additionally,the levels of liver enzymes and inflammatory chemokines in rat serum were significantly reduced(P<0.05).Silencing HSP110 with siRNA resulted in a marked decrease in M1-type polarization of Kupffer cells in the liver and downregulated the NF-κB pathway in the liver(P<0.05).Conclusions:HSP110 in the liver promotes IRI after LT in rats by activating the NF-κB pathway and inducing M1-type polarization of Kupffer cells.Targeting HSP110 to prevent IRI after LT may represent a promising new approach for the treatment of LT-associated IRI.展开更多
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of...Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.展开更多
Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate w...Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.展开更多
BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whet...BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whether the extracellular vesicles(EVs)secreted by adipose mesenchymal stem cells(ADSCs)derived from subcutaneous inguinal adipose tissue(IAT)underγ-aminobutyric acid(GABA)induction(GABA-EVs^(IAT))demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.METHODS We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA.We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays.The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds.To explore the functional RNA diversity between EVs^(IAT)and GABA-EVs^(IAT),we employed microRNA(miR)sequencing.Through a dual-luciferase reporter assay,we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein(TXNIP).Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.RESULTS Our study demonstrates that,under the influence of GABA,ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs.Consequently,this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention,ultimately resulting in myocardial protection.On a molecular mechanism level,EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.CONCLUSION Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs,thereby regulating the expression of TXNIP.The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.展开更多
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulat...Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.展开更多
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv...Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.展开更多
Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly...Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue following ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneally injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smaller infarct area and a significantly lower number of apoptotic cells were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression.展开更多
Objective To clarify the effects of repetitive transcranial magnetic stimulation (rTMS) on rat motor cortical excitabi- lity and neurofunction after cerebral ischemia-reperfusion injury. Methods After determined awake...Objective To clarify the effects of repetitive transcranial magnetic stimulation (rTMS) on rat motor cortical excitabi- lity and neurofunction after cerebral ischemia-reperfusion injury. Methods After determined awake resting motor threshold (MT) and motor evoked potentials (MEPs) of right hindlimbs, 20 Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) reperfusion injury, then rTMS were applied to rTMS group (n = 10) at different time, while control group (n = 10) received no stimulation. A week later, MT and MEPs were evaluated again, as well as neurological deficits and infarct volume. The effects of rTMS and MCAO reperfusion injury on these parameters were analyzed. Results After MCAO reperfusion, both MT level and neurological deficit scores increased, distinct focal infarction formed, and latency of MEP elongated. Compared with the control group, the increased extent of MT and neurological scores of rats receiving rTMS were significantly lower (P < 0.05), as well as the infarct volumes reduced significantly(P < 0.05). But MEP was not affected by rTMS obviously. There was a positive linear correlation between postinjury MT and infarct volume (r = 0.64, P < 0.05). Conclusion rTMS may facilitate neurofunction recovery after cerebral ischemia-reperfusion. Postinjury MT could provide prognostic information after MCAO reperfusion injury.展开更多
Acacetin(5,7-dihydroxy-4′-methoxyflavone), a potential neuroprotective agent, has an inhibitory effect on lipopolysaccharide-induced neuroinflammatory reactions. However, whether acacetin has an effect on inflammator...Acacetin(5,7-dihydroxy-4′-methoxyflavone), a potential neuroprotective agent, has an inhibitory effect on lipopolysaccharide-induced neuroinflammatory reactions. However, whether acacetin has an effect on inflammatory corpuscle 3(NLRP3) after cerebral ischemia-reperfusion injury has not been fully determined. This study used an improved suture method to establish a cerebral ischemia-reperfusion injury model in C57BL/6 mice. After ischemia with middle cerebral artery occlusion for 1 hour, reperfusion with intraperitoneal injection of 25 mg/kg of acacetin(acacetin group) or an equal volume of saline(0.1 mL/10 g, middle cerebral artery occlusion group) was used to investigate the effect of acacetin on cerebral ischemia-reperfusion injury. Infarct volume and neurological function scores were determined by 2,3,5-triphenyltetrazolium chloride staining and the Zea-Longa scoring method. Compared with the middle cerebral artery occlusion group, neurological function scores and cerebral infarction volumes were significantly reduced in the acacetin group. To understand the effect of acacetin on microglia-mediated inflammatory response after cerebral ischemia-reperfusion injury, immunohistochemistry for the microglia marker calcium adapter protein ionized calcium-binding adaptor molecule 1(Iba1) was examined in the hippocampus of ischemic brain tissue. In addition, tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in ischemic brain tissue of mice was quantified by enzyme-linked immunosorbent assay. Expression of Iba1, tumor necrosis factor-α, interleukin-1β and interleukin-6 was significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Western blot assay results showed that expression of Toll-like receptor 4, nuclear factor kappa B, NLRP3, procaspase-1, caspase-1, pro-interleukin-1β, and interleukin-1β were significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Our findings indicate that acacetin has a protective effect on cerebral ischemia-reperfusion injury, and its mechanism of action is associated with inhibition of microglia-mediated inflammation and the NLRP3 signaling pathway.展开更多
BACKGROUND: The pharmacological effects of aspirin on apoptosis are complex. The underlying mechanisms have not been properly defined. OBJECTIVE: To observe the effect of different doses of aspirin on brain cell apo...BACKGROUND: The pharmacological effects of aspirin on apoptosis are complex. The underlying mechanisms have not been properly defined. OBJECTIVE: To observe the effect of different doses of aspirin on brain cell apoptosis following focal cerebral iscbemia-reperfusion injury (CIRI) in rats. DESING, TIME AND SETTING: A randomized, controlled, animal experiment, performed at the School of Medicine and Pharmaceutics, Jiangnan University between June and October 2006. MATERIALS: Twenty-six male, adult, Sprague Dawley rats (grade Ⅱ), weighing 240-290 g, were obtained from Shanghai Experimental Animal Center, Chinese Academy of Sciences. Aspirin was provided by Sigma (USA). METHODS: The rats were randomly divided into four groups: sham-operation (SO), CIRI + vehicle, CIRI + aspirin (6 mg/kg), and CIRI + aspirin (60 mg/kg). Rats in the lesion groups were intragastrically administrated saline, aspirin (6 mg/kg), or aspirin (60 mg/kg), respectively. MAIN OUTCOME MEASURES: The number of pyramidal neurons with normal appearance in the cerebral cortex at 24 mm from the midline; apoptotic cell death as measured by TUNEL; Bcl-2 and Bax protein localization was determined by immunohistochemistry; malondialdehyde (MDA) and super oxidation (SOD) content were determined by biochemistry method; adenosine triphosphate (ATP) content measured by capillary electrophoresis. RESULTS: Following CIRI, the following parameters were altered compared with sham-operated animals: the number of neurons with normal appearance was significantly reduced in the cerebral cortex; the number of apoptotic cells increased; Bax protein expression was enhanced; and the ratio between Bcl-2 and Bax decreased. In addition, MDA content increased significantly, whereas ATP content decreased (P 〈 0.01). Aspirin ameliorated the loss of healthy pyramidal neurons. Both 6 and 60 mg/kg aspirin increased the ratio between Bcl-2 and Bax, with no significant difference between the treatment groups. In addition, 60 mg/kg aspirin decreased MDA content and increased ATP levels. However, 6 mg/kg aspirin did not have the same effect. CONCLUSION: Aspirin reduced the number of apoptotic cells following CIRI. These results suggest that the neuroprotective mechanism of aspirin could be related to elevated Bcl-2 protein levels or decreased Bax protein expression. The increase in the ratio of Bcl-2 to Bax appears to be a common anti-apoptotic mechanism of aspirin.展开更多
基金supported by Yuan Du Scholars,Clinical Research Center of Affiliated Hospital of Shandong Second Medical University,No.2022WYFYLCYJ02Weifang Key Laboratory,Weifang Science and Technology Development Plan Project Medical Category,No.2022YX093.
文摘The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
文摘Early or ultra-early pharmacological thrombolysis together with mechanical thrombectomy are key treatments for ischemic stroke,and both are aimed at vascular recanalization and improved collateral circulation.While these methods enhance tissue perfusion in the ischemic penumbra,they also trigger complex neurotoxic reactions,including apoptosis,acidosis,ion imbalance,oxidative stress,and pyroptosis,exacerbating cerebral ischemia-reperfusion injury(CIRI).Pyroptosis,a recently discovered form of programmed cell death driven by inflammation,plays a significant role in neuronal death during CIRI.This study reviews the regulatory mechanisms of pyroptosis in CIRI.
基金Supported by Key Project of Henan Provincial Administration of Traditional Chinese Medicine,No.2017ZY1020General Public Relations Project of Henan Provincial Department of Science and Technology,No.212102311123General Research Project of the National Administration of Traditional Chinese Medicine,No.GZY-KJS-2021-017.
文摘Cerebral ischemia-reperfusion is a process in which the blood supply to the brain is temporarily interrupted and subsequently restored.However,it is highly likely to lead to further aggravation of pathological damage to ischemic tissues or the nervous system.,and has accordingly been a focus of extensive clinical research.As a traditional Chinese medicinal formulation,Sanhua Decoction has gradually gained importance in the treatment of cerebrovascular diseases.Its main constituents include Citrus aurantium,Magnolia officinalis,rhubarb,and Qiangwu,which are primarily used to regulate qi.In the treatment of neurological diseases,the therapeutic effects of the Sanhua Decoction are mediated via different pathways,including antioxidant,anti-inflammatory,and neurotransmitter regu-latory pathways,as well as through the protection of nerve cells and a reduction in cerebral edema.Among the studies conducted to date,many have found that the application of Sanhua Decoction in the treatment of neurological diseases has clear therapeutic effects.In addition,as a natural treatment,the Sanhua Decoction has received widespread attention,given that it is safer and more effective than traditional Western medicines.Consequently,research on the mechanisms of action and efficacy of the Sanhua Decoctions in the treatment of cerebral ischemia-reperfusion injury is of considerable significance.In this paper,we describe the pathogenesis of cerebral ischemia-reperfusion injury and review the current status of its treatment to examine the therapeutic mechanisms of action of the Sanhua Decoction.We hope that the findings of the research presented herein will contribute to a better understanding of the efficacy of this formulation in the treatment of cerebral ischemia-reperfusion,and provide a scientific basis for its application in clinical practice.
基金supported by the S&T Program of Xingtai(2023ZC178).
文摘Background:Retinal ischemia/reperfusion(I/R)injury often results in vision loss,and effective clinical management options are currently lacking.Shikang granules(SKG)are traditional Chinese medicine-based preparations commonly used in clinical practice for treating optic atrophy.Methods:Despite decades of clinical use,the precise mechanism of action(MoA)of SKG remains elusive.Here,we employ a network pharmacological approach to elucidate its MoA by identifying active ingredients and relevant targets using the Traditional Chinese Medicine System Pharmacology Database and Analytical Platform.Targets associated with retinal I/R injury were sourced from GeneCards,Online Mendelian Inheritance in Man,and DisGeNET.Venny software facilitated the identification of intersecting targets,which were then subjected to gene ontology functional analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis.To validate the protective effect and explore the MoA of SKG in retinal I/R injuries,we conducted experiments using rat models.Results:Our animal experiments demonstrated that SKG mitigated apoptosis following retinal I/R injury by upregulating the expression of the anti-apoptotic protein Bcl-2 and downregulating the expression of BAX,Caspase-9,Caspase-3,PARP,and cytochrome C.Additionally,SKG was found to increase the expression of PI3K and AKT.Conclusions:SKG may exert its protective effects by inhibiting apoptosis through modulation of pro-apoptotic and anti-apoptotic protein expression,as well as activation of the PI3K/AKT pathway.
文摘Despite improvement in cardiopulmonary resuscitation(CPR)performance,cardiac arrest(CA)is still associated with poor prognosis.The high mortality rate is due to multi-organ dysfunction caused by cerebral ischemia and reperfusion injury(I/R).The guidelines for CPR suggest the use of therapeutic hypothermia(TH)as an effective treatment to decrease mortality and the only approach confirmed to reduce I/R injury.During TH,sedative agents(propofol)and analgesia agents(fentanyl)are commonly used to prevent shiver and pain.However,propofol has been associated with a number of serious adverse effects such as metabolic acidosis,cardiac asystole,myocardial failure,and death.In addition,mild TH alters the pharmacokinetics of agents(propofol and fentanyl)and reduces their systemic clearance.For CA patients undergoing TH,propofol can be overdosed,leading to delayed awakening,prolonged mechanical ventilation,and other subsequent complications.Ciprofol(HSK3486)is a novel anesthetic agent that is convenient and easy to administer intravenously outside the operating room.Ciprofol is rapidly metabolized and accumulates at low concentrations after continuous infusion in a stable circulatory system compared to propofol.Therefore,we hypothesized that treatment with HSK3486 and mild TH after CA could protect the brain and other organs.
基金This research was funded by the National Natural Science Foundation of China(No.81773911,81690263 and 81573616)the Development Project of Shanghai Peak Disciplines-Integrated Medicine(No.20180101).
文摘Cerebral ischemia-reperfusion injury(CI/RI)remains the main cause of disability and death in stroke patients due to lack of effective therapeutic strategies.One of the main issues related to CI/RI treatment is the presence of the blood-brain barrier(BBB),which affects the intracerebral delivery of drugs.Ginkgolide B(GB),a major bioactive component in commercially available products of Ginkgo biloba,has been shown significance in CI/RI treatment by regulating inflammatory pathways,oxidative damage,and metabolic disturbance,and seems to be a candidate for stroke recovery.However,limited by its poor hydrophilicity and lipophilicity,the development of GB preparations with good solubility,stability,and the ability to cross the BBB remains a challenge.Herein,we propose a combinatorial strategy by conjugating GB with highly lipophilic docosahexaenoic acid(DHA)to obtain a covalent complex GB-DHA,which can not only enhance the pharmacological effect of GB,but can also be encapsulated in liposomes stably.The amount of finally constructed Lipo@GB-DHA targeting to ischemic hemisphere was validated 2.2 times that of free solution in middle cerebral artery occlusion(MCAO)rats.Compared to the marketed ginkgolide injection,Lipo@GB-DHA significantly reduced infarct volume with better neurobehavioral recovery in MCAO rats after being intravenously administered both at 2 h and 6 h post-reperfusion.Low levels of reactive oxygen species(ROS)and high neuron survival in vitro was maintained via Lipo@GB-DHA treatment,while microglia in the ischemic brain were polarized from the pro-inflammatory M1 phenotype to the tissue-repairing M2 phenotype,which modulate neuroinflammatory and angiogenesis.In addition,Lipo@GB-DHA inhibited neuronal apoptosis via regulating the apoptotic pathway and maintained homeostasis by activating the autophagy pathway.Thus,transforming GB into a lipophilic complex and loading it into liposomes provides a promising nanomedicine strategy with excellent CI/RI therapeutic efficacy and industrialization prospects.
基金supported by National Natural Science Foundation of China(Nos.82100417,81760094,81760724)The Foundation of Jiangxi Provincial Department of Science and Technology Project(Nos.20202ACBL206001,20212BAB206022,20181BAB205026)+1 种基金Youth Project of Jiangxi Education Department(No.GJJ200217)Open Project of Key Laboratory of Modern of TCM,Ministry of Education Jiangxi University of Traditional Chinese Medicine(TCM-2019010).
文摘The attenuation function of Dalbergia odorifera leaves on cerebral ischemia-reperfusion(I/R)is little known.The candidate targets for the Chinese herb were extracted from brain tissues through the high-affinity chromatography.The molecular mechanism of D.odorifera leaves on cerebral I/R was investigated.Methods:Serial affinity chromatography based on D.odorifera leaves extract(DLE)affinity matrices were applied to find specific binding proteins in the brain tissues implemented on C57BL/6 mice by intraluminal middle cerebral artery occlusion for 1 h and reperfusion for 24 h.Specific binding proteins were subjected to mass-spectrometry to search for the differentially expressed proteins between control and DLE-affinity matrices.The hub genes were screened based on weighted gene co-expression network analysis(WGCNA).Then,predictive biology and potential experimental verification were performed for the candidate genes.The protective role of DLE in blood-brain barrier damage in cerebral I/R mice was evaluated by the leakage of Evans blue,western blotting,immunohistochemistry,and immunofluorescent staining.Results:952 differentially expressed proteins were classified into seven modules based on WGCNA under soft threshold 6.Based on WGCNA,AKT1,PIK3CA,NOS3,SMAD3,SMAD1,IL6,MAPK1,TGFBR2,TGFBR1,MAPK3,IGF1R,LRG1,mTOR,ROCK1,TGFB1,IL1B,SMAD2,and SMAD518 candidate hub proteins were involved in turquoise module.TGF-β,MAPK,focal adhesion,and adherens junction signaling pathway were associated with candidate hub proteins.Gene ontology analysis demonstrated that candidate hub proteins were related to the TGF-βreceptor signaling pathway,common-partner SMAD protein phosphorylation,etc.DLE could significantly reduce the leakage of Evans blue in mice with cerebral I/R,while attenuating the expression of occludin,claudin-5,and zonula occludens-1.Western blotting demonstrated that regulation of TGF-β/SMAD signaling pathway played an essential role in the protective effect of DLE.Conclusion:Thus,a number of candidate hub proteins were identified based on DLE affinity chromatography through WGCNA.DLE could attenuate the dysfunction of bloodbrain barrier in the TGF-β/SMAD signaling pathway induced by cerebral I/R.
基金supported by the Natural Science Foundation of Guangdong Province(Grant No.2020A151501287)the General Project of Science and Technology Innovation Commission of Shenzhen(Grant Nos.JCYJ20210324134800001,JCYJ20190808103401655)+1 种基金Basic Public Welfare Research Project of Zhejiang Province(Grant No.LGF21H090011)the National Natural Science Foundation of China(Grant No.82174132).
文摘Ischemic cerebrovascular disease is a leading cause of death globally and is often exacerbated by cerebral ischemic/reperfusion injury(CIRI).The exact mechanisms underlying I/R injury are unclear.In this study,we aimed to determine the role of m6A-modified methylase complex methyltransferase-like 3(METTL3)in cerebral ischemiareperfusion(I/R)injury.We found that m6A and METTL3 levels increased in OGD/RX-induced mouse astrocytescerebellar(MA-C)and the brain of middle cerebral artery occlusion(MCAO)model mice.METTL3 siRNA treatment reduced OGD-RX-induced MAC cell viability and proliferation,which increased with METTL3 over-expression.Flow cytometry analysis showed that silencing METTL3 significantly enhanced OGD/RX-induced MAC apoptosis,which was significantly reduced with METTL3 up-regulation.In an MCAO model,METTL3 overexpression significantly reduced cerebral infarction area and decreased brain cell apoptosis,indicating that METTL3 OE treatment could ameliorate brain edema and injury.Thus,METTL3 could be used as a target to treat I/R injury.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金supported by grants from the Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX0148)the National Natural Science Foundation of China (82170666 and 81873592)Chongqing Research Program of Technological Innovation and Application Demonstration (cstc2021jscx-gksbX0060)
文摘Background:Ischemia-reperfusion injury(IRI)poses a significant challenge to liver transplantation(LT).The underlying mechanism primarily involves overactivation of the immune system.Heat shock protein 110(HSP110)functions as a molecular chaperone that helps stabilize protein structures.Methods:An IRI model was established by performing LT on Sprague-Dawley rats,and HSP110 was silenced using siRNA.Hematoxylin-eosin staining,TUNEL,immunohistochemistry,ELISA and liver enzyme analysis were performed to assess IRI following LT.Western blotting and quantitative reverse transcription-polymerase chain reaction were conducted to investigate the pertinent molecular changes.Results:Our findings revealed a significant increase in the expression of HSP110 at both the mRNA and protein levels in the rat liver following LT(P<0.05).However,when rats were injected with siRNAHSP110,IRI subsequent to LT was notably reduced(P<0.05).Additionally,the levels of liver enzymes and inflammatory chemokines in rat serum were significantly reduced(P<0.05).Silencing HSP110 with siRNA resulted in a marked decrease in M1-type polarization of Kupffer cells in the liver and downregulated the NF-κB pathway in the liver(P<0.05).Conclusions:HSP110 in the liver promotes IRI after LT in rats by activating the NF-κB pathway and inducing M1-type polarization of Kupffer cells.Targeting HSP110 to prevent IRI after LT may represent a promising new approach for the treatment of LT-associated IRI.
基金supported by the National Natural Science Foundation of China,Nos.82102295(to WG),82071339(to LG),82001119(to JH),and 81901994(to BZ).
文摘Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway.
基金This study was supported by grants from the National Natural Science Foundation of China(No.81970563)the Medical Health Science and Technology Project of Health Commission of Zhejiang Province(2019RC055).
文摘Background:Polydatin,a glucoside of resveratrol,has shown protective effects against various diseases.However,little is known about its effect on hepatic ischemia-reperfusion(I/R)injury.This study aimed to elucidate whether polydatin protects liver against I/R-induced injury and to explore the underlying mechanism.Methods:After gavage feeding polydatin once daily for a week,mice underwent a partial hepatic I/R procedure.Serum alanine aminotransferase(ALT)/aspartate aminotransferase(AST),hematoxylin-eosin(H&E)and TdT-mediated dUTP nick-end labeling(TUNEL)staining were used to evaluate liver injury.The severity related to the inflammatory response and reactive oxygen species(ROS)production was also investigated.Furthermore,immunofluorescence and Western blotting were used to detect macrophage polarization and the NF-κB signaling pathway in macrophages.Results:Compared with the I/R group,polydatin pretreatment significantly attenuated I/R-induced liver damage and apoptosis.The oxidative stress marker(dihydroethidium fluorescence,malondialdehyde,superoxide dismutase and glutathione peroxidase)and I/R related inflammatory cytokines(interleukin1β,interleukin-10 and tumor necrosis factor-α)were significantly suppressed after polydatin treatment.In addition,the result of immunofluorescence indicated that polydatin reduced the polarization of macrophages toward M1 macrophages both in vivo and in vitro.Western blotting showed that polydatin inhibited the pro-inflammatory function of RAW264.7 via down-regulating the NF-κB signaling pathway.Conclusions:Polydatin protects the liver from I/R injury by remodeling macrophage polarization via NFκB signaling.
基金Supported by the National Natural Science Foundation of China,No.82200270.
文摘BACKGROUND Myocardial ischemia-reperfusion injury(MIRI)poses a prevalent challenge in current reperfusion therapies,with an absence of efficacious interventions to address the underlying causes.AIM To investigate whether the extracellular vesicles(EVs)secreted by adipose mesenchymal stem cells(ADSCs)derived from subcutaneous inguinal adipose tissue(IAT)underγ-aminobutyric acid(GABA)induction(GABA-EVs^(IAT))demonstrate a more pronounced inhibitory effect on mitochondrial oxidative stress and elucidate the underlying mechanisms.METHODS We investigated the potential protective effects of EVs derived from mouse ADSCs pretreated with GABA.We assessed cardiomyocyte injury using terminal deoxynucleotidyl transferase dUTP nick end-labeling and Annexin V/propidium iodide assays.The integrity of cardiomyocyte mitochondria morphology was assessed using electron microscopy across various intervention backgrounds.To explore the functional RNA diversity between EVs^(IAT)and GABA-EVs^(IAT),we employed microRNA(miR)sequencing.Through a dual-luciferase reporter assay,we confirmed the molecular mechanism by which EVs mediate thioredoxin-interacting protein(TXNIP).Western blotting and immunofluorescence were conducted to determine how TXNIP is involved in mediation of oxidative stress and mitochondrial dysfunction.RESULTS Our study demonstrates that,under the influence of GABA,ADSCs exhibit an increased capacity to encapsulate a higher abundance of miR-21-5p within EVs.Consequently,this leads to a more pronounced inhibitory effect on mitochondrial oxidative stress compared to EVs from ADSCs without GABA intervention,ultimately resulting in myocardial protection.On a molecular mechanism level,EVs regulate the expression of TXNIP and mitigating excessive oxidative stress in mitochondria during MIRI process to rescue cardiomyocytes.CONCLUSION Administration of GABA leads to the specific loading of miR-21-5p into EVs by ADSCs,thereby regulating the expression of TXNIP.The EVs derived from ADSCs treated with GABA effectively ameliorates mitochondrial oxidative stress and mitigates cardiomyocytes damage in the pathological process of MIRI.
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
基金supported by the National Natural Science Foundation of China(Grant No.U23A20591,52203201,52173149,and 81971174)the Youth Talents Promotion Project of Jilin Province(Grant No.202019)+1 种基金the Science and Technology Development Program of Jilin Province(Grant No.20210101114JC)Research Cooperation Platform Project of Sino-Japanese Friendship Hospital of Jilin University and Basic Medical School of Jilin University(Grant No.KYXZ2022JC04).
文摘Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.
基金supported by the Natural Science Foundation of Shandong Province,No.ZR2023MC168the National Natural Science Foundation of China,No.31670989the Key R&D Program of Shandong Province,No.2019GSF107037(all to CS).
文摘Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury.
文摘Stroke remains a worldwide health problem. Salvianolate exerts a protective effect in various mi- crocirculatory disturbance-related diseases, but studies of the mechanisms underlying its protective action have mainly focused on the myocardium, whereas little research has been carried out in brain tissue following ischemia-reperfusion. We assessed the neuroprotective effects of salvianolate in a rat model of cerebral ischemia-reperfusion injury induced using the suture method. At onset and 24 and 48 hours after reperfusion, rats were intraperitoneally injected with salvianolate (18 mg/kg) or saline. Neurological deficit scores at 72 hours showed that the neurological functions of rats that had received salvianolate were significantly better than those of the rats that had received saline. 2,3,5-Triphenyltetrazolium chloride was used to stain cerebral tissue to determine the extent of the infarct area. A significantly smaller infarct area and a significantly lower number of apoptotic cells were observed after treatment with salvianolate compared with the saline treatment. Expression of heat shock protein 22 and phosphorylated protein kinase B in ischemic brain tissue was significantly greater in rats treated with salvianolate compared with rats treated with saline. Our findings suggest that salvianolate provides neuroprotective effects against cerebral ischemia-reperfusion injury by upregulating heat shock protein 22 and phosphorylated protein kinase B expression.
文摘Objective To clarify the effects of repetitive transcranial magnetic stimulation (rTMS) on rat motor cortical excitabi- lity and neurofunction after cerebral ischemia-reperfusion injury. Methods After determined awake resting motor threshold (MT) and motor evoked potentials (MEPs) of right hindlimbs, 20 Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) reperfusion injury, then rTMS were applied to rTMS group (n = 10) at different time, while control group (n = 10) received no stimulation. A week later, MT and MEPs were evaluated again, as well as neurological deficits and infarct volume. The effects of rTMS and MCAO reperfusion injury on these parameters were analyzed. Results After MCAO reperfusion, both MT level and neurological deficit scores increased, distinct focal infarction formed, and latency of MEP elongated. Compared with the control group, the increased extent of MT and neurological scores of rats receiving rTMS were significantly lower (P < 0.05), as well as the infarct volumes reduced significantly(P < 0.05). But MEP was not affected by rTMS obviously. There was a positive linear correlation between postinjury MT and infarct volume (r = 0.64, P < 0.05). Conclusion rTMS may facilitate neurofunction recovery after cerebral ischemia-reperfusion. Postinjury MT could provide prognostic information after MCAO reperfusion injury.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China,No.2016D01C120(to JB)
文摘Acacetin(5,7-dihydroxy-4′-methoxyflavone), a potential neuroprotective agent, has an inhibitory effect on lipopolysaccharide-induced neuroinflammatory reactions. However, whether acacetin has an effect on inflammatory corpuscle 3(NLRP3) after cerebral ischemia-reperfusion injury has not been fully determined. This study used an improved suture method to establish a cerebral ischemia-reperfusion injury model in C57BL/6 mice. After ischemia with middle cerebral artery occlusion for 1 hour, reperfusion with intraperitoneal injection of 25 mg/kg of acacetin(acacetin group) or an equal volume of saline(0.1 mL/10 g, middle cerebral artery occlusion group) was used to investigate the effect of acacetin on cerebral ischemia-reperfusion injury. Infarct volume and neurological function scores were determined by 2,3,5-triphenyltetrazolium chloride staining and the Zea-Longa scoring method. Compared with the middle cerebral artery occlusion group, neurological function scores and cerebral infarction volumes were significantly reduced in the acacetin group. To understand the effect of acacetin on microglia-mediated inflammatory response after cerebral ischemia-reperfusion injury, immunohistochemistry for the microglia marker calcium adapter protein ionized calcium-binding adaptor molecule 1(Iba1) was examined in the hippocampus of ischemic brain tissue. In addition, tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in ischemic brain tissue of mice was quantified by enzyme-linked immunosorbent assay. Expression of Iba1, tumor necrosis factor-α, interleukin-1β and interleukin-6 was significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Western blot assay results showed that expression of Toll-like receptor 4, nuclear factor kappa B, NLRP3, procaspase-1, caspase-1, pro-interleukin-1β, and interleukin-1β were significantly lower in the acacetin group compared with the middle cerebral artery occlusion group. Our findings indicate that acacetin has a protective effect on cerebral ischemia-reperfusion injury, and its mechanism of action is associated with inhibition of microglia-mediated inflammation and the NLRP3 signaling pathway.
文摘BACKGROUND: The pharmacological effects of aspirin on apoptosis are complex. The underlying mechanisms have not been properly defined. OBJECTIVE: To observe the effect of different doses of aspirin on brain cell apoptosis following focal cerebral iscbemia-reperfusion injury (CIRI) in rats. DESING, TIME AND SETTING: A randomized, controlled, animal experiment, performed at the School of Medicine and Pharmaceutics, Jiangnan University between June and October 2006. MATERIALS: Twenty-six male, adult, Sprague Dawley rats (grade Ⅱ), weighing 240-290 g, were obtained from Shanghai Experimental Animal Center, Chinese Academy of Sciences. Aspirin was provided by Sigma (USA). METHODS: The rats were randomly divided into four groups: sham-operation (SO), CIRI + vehicle, CIRI + aspirin (6 mg/kg), and CIRI + aspirin (60 mg/kg). Rats in the lesion groups were intragastrically administrated saline, aspirin (6 mg/kg), or aspirin (60 mg/kg), respectively. MAIN OUTCOME MEASURES: The number of pyramidal neurons with normal appearance in the cerebral cortex at 24 mm from the midline; apoptotic cell death as measured by TUNEL; Bcl-2 and Bax protein localization was determined by immunohistochemistry; malondialdehyde (MDA) and super oxidation (SOD) content were determined by biochemistry method; adenosine triphosphate (ATP) content measured by capillary electrophoresis. RESULTS: Following CIRI, the following parameters were altered compared with sham-operated animals: the number of neurons with normal appearance was significantly reduced in the cerebral cortex; the number of apoptotic cells increased; Bax protein expression was enhanced; and the ratio between Bcl-2 and Bax decreased. In addition, MDA content increased significantly, whereas ATP content decreased (P 〈 0.01). Aspirin ameliorated the loss of healthy pyramidal neurons. Both 6 and 60 mg/kg aspirin increased the ratio between Bcl-2 and Bax, with no significant difference between the treatment groups. In addition, 60 mg/kg aspirin decreased MDA content and increased ATP levels. However, 6 mg/kg aspirin did not have the same effect. CONCLUSION: Aspirin reduced the number of apoptotic cells following CIRI. These results suggest that the neuroprotective mechanism of aspirin could be related to elevated Bcl-2 protein levels or decreased Bax protein expression. The increase in the ratio of Bcl-2 to Bax appears to be a common anti-apoptotic mechanism of aspirin.