期刊文献+
共找到2,733篇文章
< 1 2 137 >
每页显示 20 50 100
Abnormal volumetric brain morphometry and cerebral blood flow in adolescents with depression 被引量:2
1
作者 Yu-Jia Fu Xiao Liu +6 位作者 Xing-Yu Wang Xiao Li Lin-Qi Dai Wen-yu Ren Yong-Ming Zeng Zhen-Lin Li Ren-Qiang Yu 《World Journal of Psychiatry》 SCIE 2023年第6期386-396,共11页
BACKGROUND Prior research has demonstrated that the brains of adolescents with depression exhibit distinct structural alterations.However,preliminary studies have documented the pathophysiological changes in certain b... BACKGROUND Prior research has demonstrated that the brains of adolescents with depression exhibit distinct structural alterations.However,preliminary studies have documented the pathophysiological changes in certain brain regions,such as the cerebellum,highlighting a need for further research to support the current understanding of this disease.AIM To study brain changes in depressed adolescents.METHODS This study enrolled 34 adolescents with depression and 34 age-,sex-,and education-level-matched healthy control(HC)individuals.Structural and functional alterations were identified when comparing the brains of these two participant groups through voxel-based morphometry and cerebral blood flow(CBF)analysis,respectively.Associations between identified brain alterations and the severity of depressive symptoms were explored through Pearson correlation analyses.RESULTS The cerebellum,superior frontal gyrus,cingulate gyrus,pallidum,middle frontal gyrus,angular gyrus,thalamus,precentral gyrus,inferior temporal gyrus,superior temporal gyrus,inferior frontal gyrus,and supplementary motor areas of adolescents with depression showed an increase in brain volume compared to HC individuals.These patients with depression further presented with a pronounced drop in CBF in the left pallidum(group=98,and peak t=-4.4324),together with increased CBF in the right percental gyrus(PerCG)(group=90,and peak t=4.5382).In addition,17-item Hamilton Depression Rating Scale scores were significantly correlated with the increased volume in the opercular portion of the left inferior frontal gyrus(r=-0.5231,P<0.01).CONCLUSION The right PerCG showed structural and CBF changes,indicating that research on this part of the brain could offer insight into the pathophysiological causes of impaired cognition. 展开更多
关键词 Voxel-based morphometry cerebral blood flow Arterial spin labeling ADOLESCENT DEPRESSION The right percental gyrus
下载PDF
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis 被引量:2
2
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
Genetic pathways in cerebral palsy:a review of the implications for precision diagnosis and understanding disease mechanisms 被引量:1
3
作者 Yiran Xu Yifei Li +2 位作者 Seidu A.Richard Yanyan Sun Changlian Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1499-1508,共10页
Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progre... Ce rebral palsy is a diagnostic term utilized to describe a group of permanent disorders affecting movement and posture.Patients with cerebral palsy are often only capable of limited activity,resulting from non-progressive disturbances in the fetal or neonatal brain.These disturbances severely impact the child’s daily life and impose a substantial economic burden on the family.Although cerebral palsy encompasses various brain injuries leading to similar clinical outcomes,the unde rstanding of its etiological pathways remains incomplete owing to its complexity and heterogeneity.This review aims to summarize the current knowledge on the genetic factors influencing cerebral palsy development.It is now widely acknowledged that genetic mutations and alterations play a pivotal role in cerebral palsy development,which can be further influenced by environmental fa ctors.Des pite continuous research endeavors,the underlying fa ctors contributing to cerebral palsy remain are still elusive.However,significant progress has been made in genetic research that has markedly enhanced our comprehension of the genetic factors underlying cerebral palsy development.Moreove r,these genetic factors have been categorized based on the identified gene mutations in patients through clinical genotyping,including thrombosis,angiogenesis,mitochondrial and oxidative phosphorylation function,neuronal migration,and cellular autophagy.Furthermore,exploring targeted genotypes holds potential for precision treatment.In conclusion,advancements in genetic research have substantially improved our understanding of the genetic causes underlying cerebral palsy.These breakthroughs have the potential to pave the way for new treatments and therapies,consequently shaping the future of cerebral palsy research and its clinical management.The investigation of cerebral palsy genetics holds the potential to significantly advance treatments and management strategies.By elucidating the underlying cellular mechanisms,we can develop to rgeted interventions to optimize outcomes.A continued collaboration between researchers and clinicians is imperative to comprehensively unravel the intricate genetic etiology of cerebral palsy. 展开更多
关键词 cerebral palsy environmental factors ETIOLOGY genetic factors genetic mutation movement disorder spastic diplegia
下载PDF
Activation of cerebral Ras-related C3 botulinum toxin substrate(Rac) 1 promotes post-ischemic stroke functional recovery in aged mice 被引量:1
4
作者 Fan Bu Jia-Wei Min +5 位作者 Md Abdur Razzaque Ahmad El Hamamy Anthony Patrizz Li Qi Akihiko Urayama Jun Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第4期881-886,共6页
Brain functional impairment after stroke is common;however,the molecular mechanisms of post-stroke recovery remain unclear.It is well-recognized that age is the most important independent predictor of poor outcomes af... Brain functional impairment after stroke is common;however,the molecular mechanisms of post-stroke recovery remain unclear.It is well-recognized that age is the most important independent predictor of poor outcomes after stroke as older patients show poorer functional outcomes following stroke.Mounting evidence suggests that axonal regeneration and angiogenesis,the major forms of brain plasticity responsible for post-stroke recovery,diminished with advanced age.Previous studies suggest that Ras-related C3 botulinum toxin substrate(Rac)1 enhances stroke recovery as activation of Rac1 improved behavior recovery in a young mice stroke model.Here,we investigated the role of Rac1 signaling in long-term functional recovery and brain plasticity in an aged(male,18 to 22 months old C57BL/6J)brain after ischemic stroke.We found that as mice aged,Rac1 expression declined in the brain.Delayed overexpression of Rac1,using lentivirus encoding Rac1 injected day 1 after ischemic stroke,promoted cognitive(assessed using novel object recognition test)and sensorimotor(assessed using adhesive removal tests)recovery on days 14–28.This was accompanied by the increase of neurite and proliferative endothelial cells in the periinfarct zone assessed by immunostaining.In a reverse approach,pharmacological inhibition of Rac1 by intraperitoneal injection of Rac1 inhibitor NSC23766 for 14 successive days after ischemic stroke worsened the outcome with the reduction of neurite and proliferative endothelial cells.Furthermore,Rac1 inhibition reduced the activation of p21-activated kinase 1,the protein level of brain-derived neurotrophic factor,and increased the protein level of glial fibrillary acidic protein in the ischemic brain on day 28 after stroke.Our work provided insight into the mechanisms behind the diminished plasticity after cerebral ischemia in aged brains and identified Rac1 as a potential therapeutic target for improving functional recovery in the older adults after stroke. 展开更多
关键词 aging angiogenesis brain-derived neurotrophic factor(BDNF) cerebral ischemia cognitive recovery NEURITE PAK1 RAC1 sensorimotor recovery
下载PDF
Vagus nerve stimulation in cerebral stroke:biological mechanisms,therapeutic modalities,clinical applications,and future directions 被引量:1
5
作者 Li Du Xuan He +3 位作者 Xiaoxing Xiong Xu Zhang Zhihong Jian Zhenxing Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1707-1717,共11页
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the ... Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the well-being of the individual and the broader socioeconomic impact.Currently,poststroke brain dysfunction is a major and difficult area of treatment.Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autis m,refractory depression,epilepsy,and Alzheimer’s disease.It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as alte ring neurotransmitters and the plasticity of central neuro ns.In animal models of acute ischemic stroke,vagus nerve stimulation has been shown to reduce infarct size,reduce post-stroke neurological damage,and improve learning and memory capacity in rats with stroke by reducing the inflammatory response,regulating bloodbrain barrier permeability,and promoting angiogenesis and neurogenesis.At present,vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation.Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in im proving upper limb motor and cognitive abilities in stroke patients.Further clinical studies have shown that non-invasive vagus nerve stimulation,including ear/ce rvical vagus nerve stimulation,can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect.In this paper,we first describe the multiple effects of vagus nerve stimulation in stroke,and then discuss in depth its neuroprotective mechanisms in ischemic stroke.We go on to outline the res ults of the current major clinical applications of invasive and non-invasive vagus nerve stimulation.Finally,we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends.We believe that vagus nerve stimulation,as an effective treatment for stroke,will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability. 展开更多
关键词 cerebral stroke NEUROPLASTICITY non-invasive vagus nerve stimulation REHABILITATION vagus nerve stimulation
下载PDF
Cognitive impairment in cerebral small vessel disease induced by hypertension 被引量:1
6
作者 Weipeng Wei Denglei Ma +1 位作者 Lin Li Lan Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1454-1462,共9页
Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease,the most common cerebrovascular disease.Howeve r,the causal relationship between hypertension a... Hypertension is a primary risk factor for the progression of cognitive impairment caused by cerebral small vessel disease,the most common cerebrovascular disease.Howeve r,the causal relationship between hypertension and cerebral small vessel disease remains unclear.Hypertension has substantial negative impacts on brain health and is recognized as a risk factor for cerebrovascular disease.Chronic hypertension and lifestyle factors are associated with risks for stro ke and dementia,and cerebral small vessel disease can cause dementia and stroke.Hypertension is the main driver of cerebral small vessel disease,which changes the structure and function of cerebral vessels via various mechanisms and leads to lacunar infarction,leukoaraiosis,white matter lesions,and intracerebral hemorrhage,ultimately res ulting in cognitive decline and demonstrating that the brain is the to rget organ of hypertension.This review updates our understanding of the pathogenesis of hypertensioninduced cerebral small vessel disease and the res ulting changes in brain structure and function and declines in cognitive ability.We also discuss drugs to treat cerebral small vessel disease and cognitive impairment. 展开更多
关键词 blood-brain barrier cerebral small vessel disease cognitive impairment DEMENTIA endothelial dysfunction enlarged perivascular space HYPERTENSION lacunar infarction NEUROINFLAMMATION TREATMENT white matter high signal intensity
下载PDF
Cav3.2 channel regulates cerebral ischemia/reperfusion injury:a promising target for intervention 被引量:1
7
作者 Feibiao Dai Chengyun Hu +7 位作者 Xue Li Zhetao Zhang Hongtao Wang Wanjun Zhou Jiawu Wang Qingtian Geng Yongfei Dong Chaoliang Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2480-2487,共8页
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ... Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury. 展开更多
关键词 CALCINEURIN Cav3.2 channel cerebral ischemia/reperfusion hippocampus HYPOXIA/REOXYGENATION inflammatory response nuclear factor of activated T cells 3 oxidative stress primary hippocampal neurons stroke
下载PDF
Optimization of nursing interventions for postoperative mental status recovery in patients with cerebral hemorrhage 被引量:1
8
作者 Jin-Li Tang Wei-Wei Yang Xiao-Yang Yang 《World Journal of Psychiatry》 SCIE 2024年第3期434-444,共11页
BACKGROUND Hypertensive cerebral hemorrhage(HCH),the most common chronic diseases,has become a topic of global public health discussions.AIM To investigate the role of rehabilitative nursing interventions in optimizin... BACKGROUND Hypertensive cerebral hemorrhage(HCH),the most common chronic diseases,has become a topic of global public health discussions.AIM To investigate the role of rehabilitative nursing interventions in optimizing the postoperative mental status recovery phase and to provide clinical value for future rehabilitation of patients with HCH.METHODS This randomized controlled study included 120 patients with cerebral HCH who were contained to our neurosurgery department between May 2021–May 2023 as the participants.The participants have randomly sampled and grouped into the observation and control groups.The observation group received the rehabilitation nursing model,whereas the control group have given conventional nursing.The conscious state of the patients was assessed at 7,14,21,and 30 d postoperatively.After one month of care,sleep quality,anxiety,and depression were compared between the two groups.Patient and family satisfaction were assessed using a nursing care model.RESULTS The results showed that the state of consciousness scores of the patients in both groups significantly increased(P<0.05)after surgical treatment.From the 14th day onwards,differences in the state of consciousness scores between the two groups of patients began to appear(P<0.05).After one month of care,the sleep quality,anxiety state,and depression state of patients were significantly better in the observation group than in the control group(P<0.05).Satisfaction with nursing care was higher in the observation group than in the control group(P<0.05).CONCLUSION The rehabilitation nursing model has a more complete system compared to conventional nursing,which can effectively improve the postoperative quality of life of patients with cerebral hemorrhage and improve the efficiency of mental state recovery;however,further analysis and research are needed to provide more scientific evidence. 展开更多
关键词 cerebral hemorrhage Nursing interventions Mental status OPTIMIZATION Rehabilitation nursing model Quality of life
下载PDF
Small extracellular vesicles derived from cerebral endothelial cells with elevated microRNA 27a promote ischemic stroke recovery
9
作者 Yi Zhang Zhongwu Liu +7 位作者 Michael Chopp Michael Millman Yanfeng Li Pasquale Cepparulo Amy Kemper Chao Li Li Zhang Zheng Gang Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第1期224-233,共10页
Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)iso... Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling. 展开更多
关键词 axonal remodeling cerebral endothelial cells exosomes miR-27a mitochondria Semaphorin 6A small extracellular vesicles stroke
下载PDF
Human-induced pluripotent stem cell-derived neural stem cell exosomes improve blood-brain barrier function after intracerebral hemorrhage by activating astrocytes via PI3K/AKT/MCP-1 axis
10
作者 Conglin Wang Fangyuan Cheng +9 位作者 Zhaoli Han Bo Yan Pan Liao Zhenyu Yin Xintong Ge Dai Li Rongrong Zhong Qiang Liu Fanglian Chen Ping Lei 《Neural Regeneration Research》 SCIE CAS 2025年第2期518-532,共15页
Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)... Cerebral edema caused by blood-brain barrier injury after intracerebral hemorrhage is an important factor leading to poor prognosis.Human-induced pluripotent stem cell-derived neural stem cell exosomes(hiPSC-NSC-Exos)have shown potential for brain injury repair in central nervous system diseases.In this study,we explored the impact of hiPSC-NSC-Exos on blood-brain barrier preservation and the underlying mechanism.Our results indicated that intranasal delivery of hiPSC-NSC-Exos mitigated neurological deficits,enhanced blood-brain barrier integrity,and reduced leukocyte infiltration in a mouse model of intracerebral hemorrhage.Additionally,hiPSC-NSC-Exos decreased immune cell infiltration,activated astrocytes,and decreased the secretion of inflammatory cytokines like monocyte chemoattractant protein-1,macrophage inflammatory protein-1α,and tumor necrosis factor-αpost-intracerebral hemorrhage,thereby improving the inflammatory microenvironment.RNA sequencing indicated that hiPSC-NSC-Exo activated the PI3K/AKT signaling pathway in astrocytes and decreased monocyte chemoattractant protein-1 secretion,thereby improving blood-brain barrier integrity.Treatment with the PI3K/AKT inhibitor LY294002 or the monocyte chemoattractant protein-1 neutralizing agent C1142 abolished these effects.In summary,our findings suggest that hiPSC-NSC-Exos maintains blood-brain barrier integrity,in part by downregulating monocyte chemoattractant protein-1 secretion through activation of the PI3K/AKT signaling pathway in astrocytes. 展开更多
关键词 AKT ASTROCYTE blood-brain barrier cerebral edema EXOSOMES human-induced pluripotent stem cells intracerebral hemorrhage neural stem cells NEUROINFLAMMATION PI3K
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice
11
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
12
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Migratory mode transition of astrocyte progenitors in the cerebral cortex: an intrinsic or extrinsic cell process?
13
作者 Michio Miyajima Hidenori Tabata Kazunori Nakajima 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期471-472,共2页
The cerebral cortex is comprised of properly localized cell types that exert their specific functions.In the developing brain,cells migrate from the germinal region to their functional locations(Silva et al.,2019;Coss... The cerebral cortex is comprised of properly localized cell types that exert their specific functions.In the developing brain,cells migrate from the germinal region to their functional locations(Silva et al.,2019;Cossart and Garel,2022).For example,neocortical excitatory neurons are generated in the cerebral ventricular and subventricular zones,move to the developing cortical plate via radial migration,and reside in a radial array of six neuronal layers(Oishi and Nakajima,2018).On the other hand,cortical interneurons are mainly generated in ganglionic eminences,migrate tangentially across the cerebral cortex,and reach their final destinations in the cortex(Lim et al.,2018).The failure of neuronal migration leads to defects in cortical layer formation.While the mechanisms of neuronal distribution have been well examined,how astrocytes are diffusely distributed in the cortex is still unclear.Astrocytes are glial cells in the cerebral cortex with several functions,including metabolic support and synapse formation(Abbott et al.,2006;Bosworth and Allen,2017;Allen and Lyons,2018).For example,astrocytes establish synaptic connectivity in the developing brain while they contact numerous synapses and maintain optimal neuronal activity in the adult brain.In the developing brain,astrocytes are primarily generated from radial glia after the neurogenic period.While a certain type of astrocyte called fibrous astrocytes populates the white matter,protoplasmic astrocytes migrate to the cortical plate during neural network formation. 展开更多
关键词 cerebral MIGRATE ABBOTT
下载PDF
Could near infrared spectroscopy be the new weapon in our understanding of the cerebral and muscle microvascular oxygen demand during exercise?
14
作者 Stephane Perrey 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第4期457-458,共2页
Near-infrared spectroscopy(NIRS)has been increasingly utilized in both sport and health sciences to assess various physiological parameters related to exercise performance.1 NIRS methods coupled with the recent develo... Near-infrared spectroscopy(NIRS)has been increasingly utilized in both sport and health sciences to assess various physiological parameters related to exercise performance.1 NIRS methods coupled with the recent development of portable and wearable devices suitable for field-based measurements have revolutionized the study of exercise physiology and the determinants of exercise performance by providing real-time,non-invasive,and spatially localized measurements of tissue oxygenation dynamics. 展开更多
关键词 cerebral utilized EXERCISE
下载PDF
Predicting Acute Mountain Sickness Using Regional Sea-Level Cerebral Blood Flow
15
作者 Hao Zhang Jie Feng +2 位作者 Shiyu Zhang Wenjia Liu Lin Ma 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第8期887-896,共10页
Objective To investigate the role of sea-level cerebral blood flow(CBF)in predicting acute mountain sickness(AMS)using three-dimensional pseudo-continuous arterial spin labeling(3D-pCASL).Methods Forty-eight healthy v... Objective To investigate the role of sea-level cerebral blood flow(CBF)in predicting acute mountain sickness(AMS)using three-dimensional pseudo-continuous arterial spin labeling(3D-pCASL).Methods Forty-eight healthy volunteers reached an altitude of 3,650 m by air after undergoing a head magnetic resonance imaging(MRI)including 3D-pCASL at sea level.The CBF values of the bilateral anterior cerebral artery(ACA),middle cerebral artery(MCA),posterior cerebral artery(PCA),and posterior inferior cerebellar artery(PICA)territories and the laterality index(LI)of CBF were compared between the AMS and non-AMS groups.Statistical analyses were performed to determine the relationship between CBF and AMS,and the predictive performance was assessed using receiver operating characteristic(ROC)curves.Results The mean cortical CBF in women(81.65±2.69 mL/100 g/min)was higher than that in men(74.35±2.12 mL/100 g/min)(P<0.05).In men,the cortical CBF values in the bilateral ACA,PCA,PICA,and right MCA were higher in patients with AMS than in those without.Cortical CBF in the right PCA best predicted AMS(AUC=0.818).In women,the LI of CBF in the ACA was different between the AMS and non-AMS groups and predicted AMS with an AUC of 0.753.Conclusion Although the mechanism and prediction of AMS are quite complicated,higher cortical CBF at sea level,especially the CBF of the posterior circulatory system,may be used for prediction in male volunteers using non-invasive 3D-pCASL. 展开更多
关键词 Acute mountain sickness High-altitude headache cerebral blood flow Arterial spin labeling Magnetic resonance imaging
下载PDF
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention
16
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 apoptosis ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
下载PDF
SOX2/DRD2 signaling pathway facilitates astrocytic dedifferentiation in cerebral ischemic mice
17
作者 YI Xuyang KANG Enming +4 位作者 WANG Yanjin ZHANG Kun LIN Wei WU Shengxi WANG Yazhou 《神经解剖学杂志》 CAS CSCD 北大核心 2024年第3期277-286,共10页
Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mic... Objective:To explore the effects of dopamine receptor D2(DRD2)on astrocytic dedifferentiation based on SOX2-regulated genes in neural stem cells(NSCs)and astrocytes.Methods:Immunofluorescence staining and SOX2-GFP mice were used to examine the lineage differentiation of SOX2-positive cells during the development of cerebral cortex.Primary NSCs/astrocytes culture,ChIP-seq and Western Blot were adopted to analyze and verify the expression of candidate genes.Pharmacological manipulation,neurosphere formation,photochemical ischemia,immunofluorescence staining and behavior tests were adopted to evaluate the effects of activating DRD2 signaling on astrocytic dedifferentiation.Results:Immunofluorescence staining demonstrated the NSC-astrocyte switch of SOX2-expression in the normal development of cerebral cortex.ChIP-seq revealed enrichment of DRD2 signaling by SOX2-bound enhancers in NSCs and SOX2-bound promoters in astrocytes.Western Blot and immunofluorescence staining verified the expression of DRD2 in NSCs and reactive astrocytes.Application of quinagolide hydrocholoride(QH),an agonist of DRD2,significantly promoted astrocytic dedifferentiation both in vitro and in vivo following ischemia.In addition,quinagolide hydrocholoride treatment improved locomotion recovery.Conclusion:Activating DRD2 signaling facilitates astrocytic dedifferentiation and may be used to treat ischemic stroke. 展开更多
关键词 cerebral ischemia ASTROCYTE DEDIFFERENTIATION SOX2 dopamine D2 receptor(DRD2) mouse
下载PDF
Roles of N-cadherin in cerebral cortical development:cooperation with membrane trafficking and actin cytoskeletal regulation
18
作者 Shiho Ito Takeshi Kawauchi 《Neural Regeneration Research》 SCIE CAS 2025年第1期188-190,共3页
Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junc... Cell adhesion plays pivotal roles in the morphogenesis of multicellular organisms.Epithelial cells form several types of cell-to-cell adhesion,including zonula occludens(tight junctions),zonula adhaerens(adherens junctions),and macula adhaerens(desmosomes).Although these adhesion complexes are basically observed only in epithelial cells,cadherins,which are the major cell adhesion molecules of adherens junctions,are expressed in both epithelial and non-epithelial tissues,including neural tissues(Kawauchi,2012).The cadherin superfamily consists of more than 100 members,but classic cadherins. 展开更多
关键词 cerebral SKELETAL COOPERATION
下载PDF
Inhibition of the cGAS–STING pathway:contributing to the treatment of cerebral ischemia-reperfusion injury
19
作者 Hang Yang Yulei Xia +4 位作者 Yue Ma Mingtong Gao Shuai Hou Shanshan Xu Yanqiang Wang 《Neural Regeneration Research》 SCIE CAS 2025年第7期1900-1918,共19页
The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie... The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury. 展开更多
关键词 calcium homeostasis cellular autophagy cerebral ischemia-reperfusion injury cGAS–STING pathway ferroptosis gut–brain–microbiota axis inflammatory light chain 3 microglial cells Syntaxin-17 protein
下载PDF
Lactiplantibacillus plantarum AR113 alleviates microbiota dysbiosis of tongue coating and cerebral ischemia/reperfusion injury in rat
20
作者 Zhiqiang Xiong Gang Liu +5 位作者 Ling Fang Xiuming Li Yongjun Xia Guangqiang Wang Xin Song Lianzhong Ai 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2132-2140,共9页
Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and r... Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and rehabilitation is unknown.Here,TCM from stroke patients(SP)was characterized using molecular techniques.The occurrence of stroke resulted in TCM dysbiosis with significantly reduced species richness and diversity.The abundance of Prevotella,Leptotrichia,Actinomyces,Alloprevotella,Haemophilus,and TM7_[G-1]were greatly reduced,but common infection Streptococcus and Pseudomonas were remarkably increased.Furthermore,an antioxidative probiotic Lactiplantibacillus plantarum AR113 was used for TCM intervention in stroke rats with cerebral ischemia/reperfusion(I/R).AR113 partly restored I/R induced change of TCM and gut microbiota with significantly improved neurological deficit,relieved histopathologic change,increased activities of antioxidant enzymes,and decreased contents of oxidative stress biomarkers.Moreover,the gene expression of antioxidant-related proteins and apoptosis-related factors heme oxygenase-1(HO-1),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),nuclear factor erythroid 2-related factor 2(Nrf2),NAD(P)H:quinone oxidoreductase-1(NQO-1),and Bcl-2 was significantly increased,but cytochrome C,cleaved caspase-3,and Bax were markedly decreased in the brain by AR113 treatment.The results suggested that AR113 could ameliorate cerebral I/R injury through antioxidation and anti-apoptosis pathways,and AR113 intervention of TCM may have the application potential for stroke prevention and control. 展开更多
关键词 Stroke cerebral ischemia/reperfusion Tongue coating Lactiplantibacillus plantarum AR113 Probiotic intervention
下载PDF
上一页 1 2 137 下一页 到第
使用帮助 返回顶部