To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2...To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2/γ‐Al2O3,CeO2/ZrO2,and CeO2/TiO2catalysts were prepared.The physicochemical properties were probed by means of X‐ray diffraction,Raman spectroscopy,Brunauer‐Emmett‐Teller surface area measurements,X‐ray photoelectron spectroscopy,H2‐temperature programmed reduction,and NH3‐temperature programmed desorption.Furthermore,the supported ceria‐based catalysts'catalytic performance and H2O+SO2tolerance were evaluated by the NH3‐SCR model reaction.The results indicate that out of the supported ceria‐based catalysts studied,the CeO2/γ‐Al2O3catalyst exhibits the highest catalytic activity as a result of having a high relative Ce3+/Ce4+ratio,optimum reduction behavior,and the largest total acid site concentration.Finally,the CeO2/γ‐Al2O3catalyst also presents excellent H2O+SO2tolerance during the NH3‐SCR process.展开更多
In this work, we have reported the influence of the addition of base (KOH) on the physicochemical property of ceria synthesized by alcohothermal process, and the alcohothermal mechanism was also put forward. Further...In this work, we have reported the influence of the addition of base (KOH) on the physicochemical property of ceria synthesized by alcohothermal process, and the alcohothermal mechanism was also put forward. Furthermore, the prepared CeO2 was used as the support to prepare CuO/CeO2 catalysts via the wet impregnation method. The samples were characterized by N2 adsorption-desorption, X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and temperatureprogrammed reduction by H2 (H2-TPR). The catalytic properties of the CuO/CeO2 catalysts for lowtemperature CO oxidation were studied using a microreactor-GC system. The crystal size of CeO2-A was much smaller than that of CeO2-B, and the corresponding copper oxide catalysts exhibited higher catalytic activity than that of the CeO2-B-supported catalysts under the same reaction conditions. The alcohothermal mechanism indicated that KOH plays a key role in determining the physicochemical and catalytic properties of ceria-based materials.展开更多
A series of SBA-15-supported chromia-ceria catalysts with 3% Cr and 1%--5% Ce (3Cr-Ce/SBA) were pre- pared using an incipient wetness impregnation method. The catalysts were characterized by XRD, N2 adsorption, SEM,...A series of SBA-15-supported chromia-ceria catalysts with 3% Cr and 1%--5% Ce (3Cr-Ce/SBA) were pre- pared using an incipient wetness impregnation method. The catalysts were characterized by XRD, N2 adsorption, SEM, TEM-EDX, Raman spectroscopy, UV-vis spectroscopy, XPS and H2-TPR, and their catalytic performance for isobutane dehydrogenation with CO2 was tested. The addition of ceria to SBA-15-supported chromia improves the dispersion of chromium species. 3Cr-Ce/SBA catalysts are more active than SBA-15-supported chromia (3Cr/SBA), which is due to a higher concentration of Cr^6+ species present on the former catalysts. The 3Cr-3Ce/SBA catalyst shows the highest activity, which gives 35.4% isobutane conversion and 89.6% isobutene selectivity at 570℃ after 10 min of the reaction.展开更多
The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases...The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases in Cu-Fe-O with the granula of less than 13 nm. With the catalyst pretreatment temperature rising, the crystallite of Fe2CuO4 in the catalysts grows up and that of CuO disappears gradually. The presence of Ce leads to the increase of Cu2+ concentration, inhibits the crystal growth of CuO and Fe2CuO4 in the catalyst except that of Fe2O3, and eliminates the difference for reductive reaction of oxygen in Fe-O and Cu-O. At 800 degrees C, the crystal growth of Fe2O3 in Cu-Fe-Ce-O is slower than that in Cu-Fe-O, i.e., CeO2 in Cu-Fe-Ce-O inhibits the growth of Fe2O3 phase effectively, and enhances the thermostability of catalysts so as to avoid the sintering of active elements in catalysts. CeO2 promotes the reducibility of catalysts at lower temperature.展开更多
A series of CeO2-Al2O3, CeO2-TiO2, CeO2-ZrO2, and CeO2-SiO2 mixed-oxide supported copper catalysts were prepared by a modified deposition-precipitation method from ultra dilute aqueous solutions and were investigated ...A series of CeO2-Al2O3, CeO2-TiO2, CeO2-ZrO2, and CeO2-SiO2 mixed-oxide supported copper catalysts were prepared by a modified deposition-precipitation method from ultra dilute aqueous solutions and were investigated for hydrogenolysis of cellulose in aqueous medium, in the presence of hydrogen to produce sorbitol as major product. Among all the catalysts tested in the present work, CuO/CeO2ZrO2?catalyst proved to be the most promising with high conversion (92%) and excellent selectivity (sorbitol 99.1%), at an intermediate reaction temperature of 245°C in a neutral aqueous solution without an aid of liquid phase acid. The catalyst was recyclable in repeated runs and no deactivation was observed even after five reaction cycles. CuO/CeO2-ZrO2 has been characterized by XRD, SEM, TPR and BET surface area techniques.展开更多
Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2...Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.展开更多
Reductive pretreatment is an important step for activating supported metal catalysts but has received little attention.In this study,reconstruction of the supported nickel catalyst was found to be sensitive to pretrea...Reductive pretreatment is an important step for activating supported metal catalysts but has received little attention.In this study,reconstruction of the supported nickel catalyst was found to be sensitive to pretreatment conditions.In contrast to the traditional activation procedure in hydrogen,activating the catalyst in syngas created supported Ni nanoparticles with a polycrystalline structure containing an abundance of grain boundaries.The unique post-activation catalyst structure offered enhanced CO adsorption and an improved CO methanation rate.The current strategy to tune the catalyst structure via manipulating the activation conditions can potentially guide the rational design of other supported metal catalysts.展开更多
The Ni-CeO2/Al2O3 catalysts with a nickel content of 15 wt% prepared via impregnating boehmite were found to be highly active and stable for methanation of carbon dioxide with hydrogen at a H2/CO2 molar ratio of 4. Th...The Ni-CeO2/Al2O3 catalysts with a nickel content of 15 wt% prepared via impregnating boehmite were found to be highly active and stable for methanation of carbon dioxide with hydrogen at a H2/CO2 molar ratio of 4. The effects of CeO2 content and reaction temperature on the performance of the Ni-CeO2/Al2O3 catalysts were studied in detail. The results showed that the catalytic performance was strongly dependent on the CeO2 content in Ni-CeO2/Al2O3 catalysts and that the catalysts with 2 wt% CeO2 had the highest catalytic activity among the tested ones at 350 ℃. The XRD and H2-TPR characterizations revealed that the addition of CeO2 decreased the reduction temperature by altering the interaction between Ni and Al2O3, and improved the reducibility of the catalyst. Preliminary stability test of 120 h on stream over the Ni-2CeO2/Al2O3 catalyst at 350 ℃ revealed that the catalyst was much better than the unpromoted one.展开更多
Ni catalysts supported on various mixed oxides of Al2O3 with rare earth oxide and transitional metal oxides were synthesized. The studies focused on the measurement of the autothermal reforming of methane to hydrogen ...Ni catalysts supported on various mixed oxides of Al2O3 with rare earth oxide and transitional metal oxides were synthesized. The studies focused on the measurement of the autothermal reforming of methane to hydrogen over Ni catalysts supported on the mixed oxide ZrxCe30-xAl70Oδ (x-=5, 10, 15). The catalytic performance of Ni/Zr10Ce20Al70Oδ was better than that of other catalysts. XRD results showed that the addition of Zr to Ni/Ce30Al70Oδ prevented the formation of NiAl2O4 and facilitated the dispersion of NiO. Effects of CuO addition to Zr10Ce20Al70Oδ were also investigated. The activity of Ni catalyst supported on CuO-ZrO2-CeO2-Al2O3 was somewhat affected and the Ni/Cu5Zr10Ce20Al65Oδ showed the best catalytic performance with the highest CH4 conversion, yield of H2, selectivity for H2 and H2/CO production ratio in operation temperatures ranging from 650 to 750 ℃.展开更多
Ru catalysts, supported on TiO 2 , CeO 2 , and CeO 2 -TiO 2 , were prepared by the impregnation method. The effect of the structure of the supports on the activity of Ru catalysts was investigated in the catalytic wet...Ru catalysts, supported on TiO 2 , CeO 2 , and CeO 2 -TiO 2 , were prepared by the impregnation method. The effect of the structure of the supports on the activity of Ru catalysts was investigated in the catalytic wet air oxidation (CWAO) of acetic acid under 230℃ and 5 MPa in a batch reactor. Physical properties including the surface area, crystalline phase, and surface components of the Ru catalysts were characterized by N 2 adsorption, X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The CeO 2 -based Ru catalysts had good activity, and the prepared RuO 2 /CeO 2 catalyst showed markedly higher activity than the RuO 2 /CeO 2 -TiO 2 catalyst. The surface structure, the high amount of chemisorbed oxygen on the catalyst surface, and the suitable pH pzc value of the supports played an important role in the activity of the Ru catalysts in CWAO of acetic acid.展开更多
Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentar...Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.展开更多
Auto-thermal reforming of methane, combining partial oxidation and reforming of methane with CO2 or steam, was carried out with Pt/Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts, in a temperature range of 300-900℃. The auto-th...Auto-thermal reforming of methane, combining partial oxidation and reforming of methane with CO2 or steam, was carried out with Pt/Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts, in a temperature range of 300-900℃. The auto-thermal reforming occurs in two simultaneous stages, namely, total combustion of methane and reforming of the unconverted methane with steam and CO2, with the O2 conversion of 100% starting from 450℃. For combination with CO2 reforming, the Pt/CeO2 catalyst showed the lowest initial activity at 800℃, and the highest stability over 40 h on-stream. This catalyst also presented the best performance for the reaction with steam at 800℃. The higher resistance to coke formation of the catalyst supported on ceria is due to the metal-support interactions and the higher mobility of oxygen in the oxide lattice.展开更多
In this work,we report for the first time the in-situ catalytic pyrolysis of Pavlova sp.microalgae,which has been performed in a fixed-bed reactor in presence of Ce/Al2O3-based catalysts.The effects of pyrolysis param...In this work,we report for the first time the in-situ catalytic pyrolysis of Pavlova sp.microalgae,which has been performed in a fixed-bed reactor in presence of Ce/Al2O3-based catalysts.The effects of pyrolysis parameters,such as temperature and catalyst were studied on the products yield distribution and biooil composition,among others.Results showed that all catalysts increased the bio-oil yield with respect to the non-catalytic runs and reduced the O/C ratio from 0.69(Pavlova sp.)to 0.1–0.15,which is close to that of crude oil.In terms of bio-oil oxygen content,Mg Ce/Al2O3presented the best performance with a reduction of more than 30%,from 14.1 to 9.8 wt%,of the oxygen concentration in comparison with thermal pyrolysis.However,Ni Ce/Al2O3gave rise to the highest aliphatics/aromatics fractions.The elemental and gas analysis indicates that N was partially removed from the catalytic bio-oils in the gas phase in forms of NH3and HCN.展开更多
The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prep...The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prepared by coprecipitation, show that the doping of V^5+ and Cu^2+ in CeO2-ZrO2 mixed oxides can enhance the catalytic activity and thermal stability of coating materials. Moreover, different additives were doped in slurries of γ-Al2O3 to investigate the influence of additives on oxidation activity of catalysts. The mixture of ceria-zirconia, alkali metals and other rare earths acting as additives exhibits promotion effect on oxidation activity by optimizing the distribution of oxygen on the surface and in the bulk of ceria species. This mentioned mixture was mixed with γ-Al2O3 and a newly proposed active component to prepare a new catalyst. Afterward, the influence of thermal treatment on the new catalyst were investigated by calcinations at 500, 650, 750, 800, 850 and 900 ℃ for 2 h. The light-off curves of CO and HC show that after being treated at 650 - 750 ℃, catalysts present the best activity. XRD patterns show that ceria and zirconia species in the newly proposed active component form a phase of extra CeO2-ZrO2 mixed oxides on the surface of catalysts after the thermal treatment at 750 ℃, which has practical value for improving the preparation process and promoting the catalytic properties. Moreover, XPS resuits imply the existence of Ce1-xPdxO2-σ and Ce1- xPtxO2-σ on the surface of these treated samples, which may show influence on the catalytic activities.展开更多
采用自制锰铈氧化物稀土催化剂间歇式反应釜催化湿式氧化(catalytic wet air oxidation,CWAO)处理高质量浓度苯酚废水,研究催化剂粒径、反应温度、系统氧分压、配水苯酚质量浓度、催化剂投加量、配水pH值等参数对湿式氧化处理效果的影响...采用自制锰铈氧化物稀土催化剂间歇式反应釜催化湿式氧化(catalytic wet air oxidation,CWAO)处理高质量浓度苯酚废水,研究催化剂粒径、反应温度、系统氧分压、配水苯酚质量浓度、催化剂投加量、配水pH值等参数对湿式氧化处理效果的影响.研究表明,催化剂粒径>200目时基本消除CWAO反应内扩散传质影响,较低温度下(100℃)CWAO可基本完全氧化处理苯酚废水,氧分压的提高仅加快了CWAO的反应进程,CWAO反应产生抑制与催化剂投加量和配水苯酚质量浓度之比相关,弱酸性条件最适于CWAO反应.催化剂失活的机理在于催化剂表面积碳.展开更多
基金supported by the National Natural Science Foundation of China (21507130)the Chongqing Science and Technology Commission (cstc2016jcyjA 0070,cstc2014pt-gc20002,cstc2014yykfC 20003,cstckjcxljrc13)the Open Project Program of Chongqing Key Laboratory of Ca-talysis and Functional Organic Molecules from Chongqing Technology and Business University (1456029)~~
文摘To investigate how the physicochemical properties and NH3‐selective catalytic reduction(NH3‐SCR)performance of supported ceria‐based catalysts are influenced as a function of support type,a series of CeO2/SiO2,CeO2/γ‐Al2O3,CeO2/ZrO2,and CeO2/TiO2catalysts were prepared.The physicochemical properties were probed by means of X‐ray diffraction,Raman spectroscopy,Brunauer‐Emmett‐Teller surface area measurements,X‐ray photoelectron spectroscopy,H2‐temperature programmed reduction,and NH3‐temperature programmed desorption.Furthermore,the supported ceria‐based catalysts'catalytic performance and H2O+SO2tolerance were evaluated by the NH3‐SCR model reaction.The results indicate that out of the supported ceria‐based catalysts studied,the CeO2/γ‐Al2O3catalyst exhibits the highest catalytic activity as a result of having a high relative Ce3+/Ce4+ratio,optimum reduction behavior,and the largest total acid site concentration.Finally,the CeO2/γ‐Al2O3catalyst also presents excellent H2O+SO2tolerance during the NH3‐SCR process.
文摘In this work, we have reported the influence of the addition of base (KOH) on the physicochemical property of ceria synthesized by alcohothermal process, and the alcohothermal mechanism was also put forward. Furthermore, the prepared CeO2 was used as the support to prepare CuO/CeO2 catalysts via the wet impregnation method. The samples were characterized by N2 adsorption-desorption, X-ray powder diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and temperatureprogrammed reduction by H2 (H2-TPR). The catalytic properties of the CuO/CeO2 catalysts for lowtemperature CO oxidation were studied using a microreactor-GC system. The crystal size of CeO2-A was much smaller than that of CeO2-B, and the corresponding copper oxide catalysts exhibited higher catalytic activity than that of the CeO2-B-supported catalysts under the same reaction conditions. The alcohothermal mechanism indicated that KOH plays a key role in determining the physicochemical and catalytic properties of ceria-based materials.
文摘A series of SBA-15-supported chromia-ceria catalysts with 3% Cr and 1%--5% Ce (3Cr-Ce/SBA) were pre- pared using an incipient wetness impregnation method. The catalysts were characterized by XRD, N2 adsorption, SEM, TEM-EDX, Raman spectroscopy, UV-vis spectroscopy, XPS and H2-TPR, and their catalytic performance for isobutane dehydrogenation with CO2 was tested. The addition of ceria to SBA-15-supported chromia improves the dispersion of chromium species. 3Cr-Ce/SBA catalysts are more active than SBA-15-supported chromia (3Cr/SBA), which is due to a higher concentration of Cr^6+ species present on the former catalysts. The 3Cr-3Ce/SBA catalyst shows the highest activity, which gives 35.4% isobutane conversion and 89.6% isobutene selectivity at 570℃ after 10 min of the reaction.
文摘The solid structures and thermostabilities of Cu-Fe-O and Cu-Fe-Ce-O supported on alumina were studied by XRD, ESR, Mossbauer and TPR techniques. The studies indicate that there are Fe2CuO4, CuO and alpha-Fe2O3 phases in Cu-Fe-O with the granula of less than 13 nm. With the catalyst pretreatment temperature rising, the crystallite of Fe2CuO4 in the catalysts grows up and that of CuO disappears gradually. The presence of Ce leads to the increase of Cu2+ concentration, inhibits the crystal growth of CuO and Fe2CuO4 in the catalyst except that of Fe2O3, and eliminates the difference for reductive reaction of oxygen in Fe-O and Cu-O. At 800 degrees C, the crystal growth of Fe2O3 in Cu-Fe-Ce-O is slower than that in Cu-Fe-O, i.e., CeO2 in Cu-Fe-Ce-O inhibits the growth of Fe2O3 phase effectively, and enhances the thermostability of catalysts so as to avoid the sintering of active elements in catalysts. CeO2 promotes the reducibility of catalysts at lower temperature.
文摘A series of CeO2-Al2O3, CeO2-TiO2, CeO2-ZrO2, and CeO2-SiO2 mixed-oxide supported copper catalysts were prepared by a modified deposition-precipitation method from ultra dilute aqueous solutions and were investigated for hydrogenolysis of cellulose in aqueous medium, in the presence of hydrogen to produce sorbitol as major product. Among all the catalysts tested in the present work, CuO/CeO2ZrO2?catalyst proved to be the most promising with high conversion (92%) and excellent selectivity (sorbitol 99.1%), at an intermediate reaction temperature of 245°C in a neutral aqueous solution without an aid of liquid phase acid. The catalyst was recyclable in repeated runs and no deactivation was observed even after five reaction cycles. CuO/CeO2-ZrO2 has been characterized by XRD, SEM, TPR and BET surface area techniques.
文摘Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity.
基金sponsored by the National Natural Science Foundation of China (22078089 and 22122807)Natural Science Foundation of Shanghai (21ZR1425700)+1 种基金Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning and Shanghai Sailing Program (19YF1410600)The research at Lehigh University was supported by the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center funded by Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0012577)
文摘Reductive pretreatment is an important step for activating supported metal catalysts but has received little attention.In this study,reconstruction of the supported nickel catalyst was found to be sensitive to pretreatment conditions.In contrast to the traditional activation procedure in hydrogen,activating the catalyst in syngas created supported Ni nanoparticles with a polycrystalline structure containing an abundance of grain boundaries.The unique post-activation catalyst structure offered enhanced CO adsorption and an improved CO methanation rate.The current strategy to tune the catalyst structure via manipulating the activation conditions can potentially guide the rational design of other supported metal catalysts.
基金supported by the National High Technology Research and Development Program of China(Grant No.2006AA11A189)Science and Technology Commission of Shanghai Municipality(Grant No.07DZ12036,and08DZ12064)Shanghai Pujiang Program(Grant No.08PJ1405900)
文摘The Ni-CeO2/Al2O3 catalysts with a nickel content of 15 wt% prepared via impregnating boehmite were found to be highly active and stable for methanation of carbon dioxide with hydrogen at a H2/CO2 molar ratio of 4. The effects of CeO2 content and reaction temperature on the performance of the Ni-CeO2/Al2O3 catalysts were studied in detail. The results showed that the catalytic performance was strongly dependent on the CeO2 content in Ni-CeO2/Al2O3 catalysts and that the catalysts with 2 wt% CeO2 had the highest catalytic activity among the tested ones at 350 ℃. The XRD and H2-TPR characterizations revealed that the addition of CeO2 decreased the reduction temperature by altering the interaction between Ni and Al2O3, and improved the reducibility of the catalyst. Preliminary stability test of 120 h on stream over the Ni-2CeO2/Al2O3 catalyst at 350 ℃ revealed that the catalyst was much better than the unpromoted one.
基金The project is supported by Guangdong Provincial Natural Science Foundation of China(030514)Science and Technology Plan of Guangdong Province(2004B33401006)
文摘Ni catalysts supported on various mixed oxides of Al2O3 with rare earth oxide and transitional metal oxides were synthesized. The studies focused on the measurement of the autothermal reforming of methane to hydrogen over Ni catalysts supported on the mixed oxide ZrxCe30-xAl70Oδ (x-=5, 10, 15). The catalytic performance of Ni/Zr10Ce20Al70Oδ was better than that of other catalysts. XRD results showed that the addition of Zr to Ni/Ce30Al70Oδ prevented the formation of NiAl2O4 and facilitated the dispersion of NiO. Effects of CuO addition to Zr10Ce20Al70Oδ were also investigated. The activity of Ni catalyst supported on CuO-ZrO2-CeO2-Al2O3 was somewhat affected and the Ni/Cu5Zr10Ce20Al65Oδ showed the best catalytic performance with the highest CH4 conversion, yield of H2, selectivity for H2 and H2/CO production ratio in operation temperatures ranging from 650 to 750 ℃.
基金supported by the National Natural Science Foundation of China (No. 51078143)the National High Technology Research & Development Program of China (No. 2002AA601260)
文摘Ru catalysts, supported on TiO 2 , CeO 2 , and CeO 2 -TiO 2 , were prepared by the impregnation method. The effect of the structure of the supports on the activity of Ru catalysts was investigated in the catalytic wet air oxidation (CWAO) of acetic acid under 230℃ and 5 MPa in a batch reactor. Physical properties including the surface area, crystalline phase, and surface components of the Ru catalysts were characterized by N 2 adsorption, X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The CeO 2 -based Ru catalysts had good activity, and the prepared RuO 2 /CeO 2 catalyst showed markedly higher activity than the RuO 2 /CeO 2 -TiO 2 catalyst. The surface structure, the high amount of chemisorbed oxygen on the catalyst surface, and the suitable pH pzc value of the supports played an important role in the activity of the Ru catalysts in CWAO of acetic acid.
基金the National Natural Science Foundation of China(20825310,20973011)the National Basic Research Program of China(973 Program,2011CB201400,2011CB808700)
文摘Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports.
文摘Auto-thermal reforming of methane, combining partial oxidation and reforming of methane with CO2 or steam, was carried out with Pt/Al2O3, Pt/ZrO2 and Pt/CeO2 catalysts, in a temperature range of 300-900℃. The auto-thermal reforming occurs in two simultaneous stages, namely, total combustion of methane and reforming of the unconverted methane with steam and CO2, with the O2 conversion of 100% starting from 450℃. For combination with CO2 reforming, the Pt/CeO2 catalyst showed the lowest initial activity at 800℃, and the highest stability over 40 h on-stream. This catalyst also presented the best performance for the reaction with steam at 800℃. The higher resistance to coke formation of the catalyst supported on ceria is due to the metal-support interactions and the higher mobility of oxygen in the oxide lattice.
基金the EPSRC (Grant no. EP/P018955/1) for supportthe financial support provided by the post-doctoral research fellowship programme (2219),Scientific and Technological Research Council of Turkey (TUBITAK)
文摘In this work,we report for the first time the in-situ catalytic pyrolysis of Pavlova sp.microalgae,which has been performed in a fixed-bed reactor in presence of Ce/Al2O3-based catalysts.The effects of pyrolysis parameters,such as temperature and catalyst were studied on the products yield distribution and biooil composition,among others.Results showed that all catalysts increased the bio-oil yield with respect to the non-catalytic runs and reduced the O/C ratio from 0.69(Pavlova sp.)to 0.1–0.15,which is close to that of crude oil.In terms of bio-oil oxygen content,Mg Ce/Al2O3presented the best performance with a reduction of more than 30%,from 14.1 to 9.8 wt%,of the oxygen concentration in comparison with thermal pyrolysis.However,Ni Ce/Al2O3gave rise to the highest aliphatics/aromatics fractions.The elemental and gas analysis indicates that N was partially removed from the catalytic bio-oils in the gas phase in forms of NH3and HCN.
文摘The metallic substrate-catalysts with different subsistence states of CeO2-ZrO2 mixed oxides were prepared and the catalytic properties were investigated. The studies on CeO2-ZrO2-V2O5-CuO mixed oxides which were prepared by coprecipitation, show that the doping of V^5+ and Cu^2+ in CeO2-ZrO2 mixed oxides can enhance the catalytic activity and thermal stability of coating materials. Moreover, different additives were doped in slurries of γ-Al2O3 to investigate the influence of additives on oxidation activity of catalysts. The mixture of ceria-zirconia, alkali metals and other rare earths acting as additives exhibits promotion effect on oxidation activity by optimizing the distribution of oxygen on the surface and in the bulk of ceria species. This mentioned mixture was mixed with γ-Al2O3 and a newly proposed active component to prepare a new catalyst. Afterward, the influence of thermal treatment on the new catalyst were investigated by calcinations at 500, 650, 750, 800, 850 and 900 ℃ for 2 h. The light-off curves of CO and HC show that after being treated at 650 - 750 ℃, catalysts present the best activity. XRD patterns show that ceria and zirconia species in the newly proposed active component form a phase of extra CeO2-ZrO2 mixed oxides on the surface of catalysts after the thermal treatment at 750 ℃, which has practical value for improving the preparation process and promoting the catalytic properties. Moreover, XPS resuits imply the existence of Ce1-xPdxO2-σ and Ce1- xPtxO2-σ on the surface of these treated samples, which may show influence on the catalytic activities.
文摘采用自制锰铈氧化物稀土催化剂间歇式反应釜催化湿式氧化(catalytic wet air oxidation,CWAO)处理高质量浓度苯酚废水,研究催化剂粒径、反应温度、系统氧分压、配水苯酚质量浓度、催化剂投加量、配水pH值等参数对湿式氧化处理效果的影响.研究表明,催化剂粒径>200目时基本消除CWAO反应内扩散传质影响,较低温度下(100℃)CWAO可基本完全氧化处理苯酚废水,氧分压的提高仅加快了CWAO的反应进程,CWAO反应产生抑制与催化剂投加量和配水苯酚质量浓度之比相关,弱酸性条件最适于CWAO反应.催化剂失活的机理在于催化剂表面积碳.