We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-visco...We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.展开更多
The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a comb...The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a combined space-time separa- tion involving spatial separation r and time delay T, has stimulated considerable experimental efforts aimed at testing the model in various turbulent flows. In this paper, we review some recent experimental investigations of the space-time correlation function in turbulent Rayleigh-Benard convection. The experiments conducted at different representative locations in the convection cell confirmed the predictions of the elliptic model for the velocity field and passive scalar field, such as local temperature and shadowgraph images. The understanding of the functional form of Cu(r, v) has a wide variety of applications in the analysis of experimental and numerical data and in the study of the statistical properties of small-scale turbulence. A few examples are discussed in the review.展开更多
This paper reviews some of the principal uses, over almost seven decades, of correlations, in both Eulerian and Lagrangian frames of reference, of properties of turbulent flows at variable spatial locations and variab...This paper reviews some of the principal uses, over almost seven decades, of correlations, in both Eulerian and Lagrangian frames of reference, of properties of turbulent flows at variable spatial locations and variable time in- stants. Commonly called space-time correlations, they have been fundamental to theories and models of turbulence as well as for the analyses of experimental and direct numerical simulation turbulence data.展开更多
The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by ...The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remains valid.展开更多
To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel corre...To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel correlated statistics are available at the transmitter, the wideband correlated fading channels can be converted into an independent FIR channel with 2 transmitting antennas and N receiving antennas by eigenbeamforming and dimension reduction. OFDM is utilized to convert the FIR channel into a group of independent parallel subchanneis to carry space-time codes. With the new structure, the performance of space-time coding over downlink wideband correlated fading channels is greatly improved and the system complexity is reduced. Validity of the proposed system is verified by simulations under different conditions. Comparison between the new structure and an available structure is made both theoretically and computationslly.展开更多
Throughout scientific research, the state space reconstruction that embeds a non-linear time series is the first and necessary step for characterizing and predicting the behavior of a complex system. This requires to ...Throughout scientific research, the state space reconstruction that embeds a non-linear time series is the first and necessary step for characterizing and predicting the behavior of a complex system. This requires to choose appropriate values of time delay T and embedding dimension dE. Three methods are applied and discussed on nonlinear time series provided by the Rössler attractor equations set: Cao’s method, the C-C method developed by Kim et al. and the C-C-1 method developed by Cai et al. A way to fix a parameter necessary to implement the last method is given. Focus has been put on small size and/or noisy time series. The reconstruction quality is measured by using a criterion based on the transformation smoothness.展开更多
Based on Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical thickness (AOT) measurements in 1980–2001 a study is made of space/time patterns and difference between land and sea of AOT 0.50 μm thick ...Based on Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical thickness (AOT) measurements in 1980–2001 a study is made of space/time patterns and difference between land and sea of AOT 0.50 μm thick over China,which are put into correlation analysis with synchronous extreme temperature indices (warm/cold day and night).Results suggest that 1) the long-term mean AOT over China is characterized by typical geography,with pronounced land-sea contrast.And AOT has significant seasonality and its seasonal difference is diminished as a function of latitude.2) On the whole,the AOT displays an appreciably increasing trend,with the distinct increase in the eastern Qinghai-Tibetan plateau and SW China,North China,the mid-lower Changjiang (MiLY) valley as well as the South China Sea,but marginal decrease over western/northern Xinjiang and part of South China.3) The AOT over land and sea is marked by conspicuous intra-seasonal and -yearly oscillations,with remarkable periods at one-,two-yr and more (as interannual periods).4) Land AOT change is well correlated with extremely temperature indexes.Generally,the correlations of AOT to the extreme temperature indices are more significant in Eastern China with 110 ° E as the division.Their high-correlation regions are along the Southern China coastline,the Loess Plateau and the Sichuan Basin,and even higher in North China Plain and the mid-lower Changjiang River reaches.5) Simulations of LMDZ-regional model indicate that aerosol effects may result in cooling all over China,particularly in Eastern China.The contribution of aerosol change may result in more decrease in the maximum temperature than the minimum,with decrease of 0.11/0.08 K for zonal average,respectively.展开更多
The Various physical mechanisms governing river flow dynamics act on a wide range of temporal and spatial scales. This spatio-temporal variability has been believed to be influenced by a large number of variables. In ...The Various physical mechanisms governing river flow dynamics act on a wide range of temporal and spatial scales. This spatio-temporal variability has been believed to be influenced by a large number of variables. In the light of this, an attempt was made in this paper to examine whether the daily flow sequence of the Benue River exhibits low-dimensional chaos;that is, if or not its dynamics could be explained by a small number of effective degrees of freedom. To this end, nonlinear analysis of the flow sequence was done by evaluating the correlation dimension based on phase space reconstruction and maximal Lyapunov estimation as well as nonlinear prediction. Results obtained in all instances considered indicate that there is no discernible evidence to suggest that the daily flow sequence of the Benue River exhibit nonlinear deterministic chaotic signatures. Thus, it may be conjectured that the daily flow time series span a wide dynamical range between deterministic chaos and periodic signal contaminated with additive noise;that is, by either measurement or dynamical noise. However, contradictory results abound on the existence of low-dimensional chaos in daily streamflows. Hence, it is paramount to note that if the existence of low-dimension deterministic component is reliably verified, it is necessary to investigate its origin, dependence on the space-time behavior of precipitation and therefore on climate and role of the inflow-runoff mechanism.展开更多
The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary l...The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space-time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space-time correlation instead of Taylor hypothesis. The convection velocities derived from the space-time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.展开更多
The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weat...The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weather stations could be decomposed as components with different time scales based on their spectral distribution. Kolmogorov-Zurbenko (KZ) filters were applied to smooth and interpolate gridded temperature data to construct global maps for long-term (≥ 6 years) trends and El Nino-like (2 to 5 years) movements over the time period of 1893 to 2008. Annual temperature seasonality, latitude and altitude effects have been carefully accounted for to capture meaningful spatiotemporal patterns of climate variability. The result revealed striking facts about global temperature anomalies for specific regions. Correlation analysis and the movie of thermal maps for El Nino-like component clearly supported the existence of such climate fluctuations in time and space.展开更多
A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two...A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.展开更多
The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation ...The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation and space correlation and another approach introduced. And then, the validity of the two methods is analyzed and compared.展开更多
基金supported by the National Basic Research Program of China (973 Program) (2007CB814800)the National Natural Science Foundation of China (10325211 and 10628206)
文摘We compare the space-time correlations calculated from direct numerical simulation (DNS) and large-eddy simulation (LES) of turbulent channel flows. It is found from the comparisons that the LES with an eddy-viscosity subgrid scale (SGS) model over-predicts the space-time corre- lations than the DNS. The overpredictions are further quantified by the integral scales of directional correlations and convection velocities. A physical argument for the overpre- diction is provided that the eddy-viscosity SGS model alone does not includes the backscatter effects although it correctly represents the energy dissipations of SGS motions. This argument is confirmed by the recently developed elliptic model for space-time correlations in turbulent shear flows. It suggests that enstrophy is crucial to the LES prediction of spacetime correlations. The random forcing models and stochastic SGS models are proposed to overcome the overpredictions on space-time correlations.
基金supported in part by RGC of Hong Kong SAR (HKUST-605013)
文摘The recent development of the elliptic model (He, et al. Phy. Rev. E, 2006), which predicts that the space-time correlation function Cu(r, r) in a turbulent flow has a scaling form Cu(rE, 0) with re being a combined space-time separa- tion involving spatial separation r and time delay T, has stimulated considerable experimental efforts aimed at testing the model in various turbulent flows. In this paper, we review some recent experimental investigations of the space-time correlation function in turbulent Rayleigh-Benard convection. The experiments conducted at different representative locations in the convection cell confirmed the predictions of the elliptic model for the velocity field and passive scalar field, such as local temperature and shadowgraph images. The understanding of the functional form of Cu(r, v) has a wide variety of applications in the analysis of experimental and numerical data and in the study of the statistical properties of small-scale turbulence. A few examples are discussed in the review.
基金supported by the Chinese Academy of Sciences and the Burgers Program for Fluid Dynamics of the University of Maryland
文摘This paper reviews some of the principal uses, over almost seven decades, of correlations, in both Eulerian and Lagrangian frames of reference, of properties of turbulent flows at variable spatial locations and variable time in- stants. Commonly called space-time correlations, they have been fundamental to theories and models of turbulence as well as for the analyses of experimental and direct numerical simulation turbulence data.
基金supported by the National Natural Science Foundation of China(11332006 and 11272233)the National Key Basic Research Program(2012CB720101)+1 种基金Tianjin University Research and Innovation Foundationthe opening subjects of The State Key Laboratory of Nonlinear Mechanics(LNM),Institute of Mechanics,Chinese Academy of Sciences
文摘The present experimental work is devoted to in- vestigate a new space-time correlation model for the turbulent boundary layer over a flat and a wavy walls. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic time-resolved particle image velocimetry (Tomo-TRPIV). The space-time correlations of instantaneous streamwise fluctuation velocity are calculated at 3 different wall-normal locations in logarithmic layer. It is found that the scales of coherent structure increase with moving far away from the wall. The growth of scales is a manifestation of the growth of prevalent coherent structures in the turbulent boundary layer like hairpin vortex or hairpin packets when they lift up. The resulting contours of the space-time correlation exhibit elliptic-like shapes rather than straight lines. It is suggested that, instead of Taylor hypothesis, the elliptic model of the space-time correlation is valid for the wallbounded turbulent flow over either a flat wall or a wavy wall. The elliptic iso-correlation curves have a uniform preferred orientation whose slope is determined by the convection velocity. The convection velocity derived from the space-time correlation represents the velocity at which the large-scale eddies carry small-scale eddies. The sweep velocity rep- resents the distortions of the small-scale eddies and is intimately associated with the fluctuation velocity in the logarithmic layer of turbulent boundary layers. The nondimensionalized correlation curves confirm that the elliptic model is more proper for approximating the space-time correlation than Taylor hypothesis, because the latter can not embody the small-scale motions which have non-negligible distortions. A second flow over a wavy wall is also recorded using TRPIV. Due to the combined effect of shear layers and the adverse pressure gradient, the space-time correlation does not show an elliptic-like shape at some specific heights over the wavy wall, but in the outer region of the wavy wallbounded flow, the elliptic model remains valid.
基金Project supported by National Natural Science Foundation ofChina (Grant No .60172028) ,Natural Science Foundation ofShanxi Province(Grant No .2004F45)
文摘To improve the performance of space-time coding over downlink frequency-selective correlated fading channels, a novel transmission scheme combining eigenbeamfoming and OFDM is proposed. Provided that the channel correlated statistics are available at the transmitter, the wideband correlated fading channels can be converted into an independent FIR channel with 2 transmitting antennas and N receiving antennas by eigenbeamforming and dimension reduction. OFDM is utilized to convert the FIR channel into a group of independent parallel subchanneis to carry space-time codes. With the new structure, the performance of space-time coding over downlink wideband correlated fading channels is greatly improved and the system complexity is reduced. Validity of the proposed system is verified by simulations under different conditions. Comparison between the new structure and an available structure is made both theoretically and computationslly.
文摘Throughout scientific research, the state space reconstruction that embeds a non-linear time series is the first and necessary step for characterizing and predicting the behavior of a complex system. This requires to choose appropriate values of time delay T and embedding dimension dE. Three methods are applied and discussed on nonlinear time series provided by the Rössler attractor equations set: Cao’s method, the C-C method developed by Kim et al. and the C-C-1 method developed by Cai et al. A way to fix a parameter necessary to implement the last method is given. Focus has been put on small size and/or noisy time series. The reconstruction quality is measured by using a criterion based on the transformation smoothness.
基金Foundation of Jiangsu Key Laboratory of Meteorological Disaster under contract No. KLME05001
文摘Based on Total Ozone Mapping Spectrometer (TOMS) monthly aerosol optical thickness (AOT) measurements in 1980–2001 a study is made of space/time patterns and difference between land and sea of AOT 0.50 μm thick over China,which are put into correlation analysis with synchronous extreme temperature indices (warm/cold day and night).Results suggest that 1) the long-term mean AOT over China is characterized by typical geography,with pronounced land-sea contrast.And AOT has significant seasonality and its seasonal difference is diminished as a function of latitude.2) On the whole,the AOT displays an appreciably increasing trend,with the distinct increase in the eastern Qinghai-Tibetan plateau and SW China,North China,the mid-lower Changjiang (MiLY) valley as well as the South China Sea,but marginal decrease over western/northern Xinjiang and part of South China.3) The AOT over land and sea is marked by conspicuous intra-seasonal and -yearly oscillations,with remarkable periods at one-,two-yr and more (as interannual periods).4) Land AOT change is well correlated with extremely temperature indexes.Generally,the correlations of AOT to the extreme temperature indices are more significant in Eastern China with 110 ° E as the division.Their high-correlation regions are along the Southern China coastline,the Loess Plateau and the Sichuan Basin,and even higher in North China Plain and the mid-lower Changjiang River reaches.5) Simulations of LMDZ-regional model indicate that aerosol effects may result in cooling all over China,particularly in Eastern China.The contribution of aerosol change may result in more decrease in the maximum temperature than the minimum,with decrease of 0.11/0.08 K for zonal average,respectively.
文摘The Various physical mechanisms governing river flow dynamics act on a wide range of temporal and spatial scales. This spatio-temporal variability has been believed to be influenced by a large number of variables. In the light of this, an attempt was made in this paper to examine whether the daily flow sequence of the Benue River exhibits low-dimensional chaos;that is, if or not its dynamics could be explained by a small number of effective degrees of freedom. To this end, nonlinear analysis of the flow sequence was done by evaluating the correlation dimension based on phase space reconstruction and maximal Lyapunov estimation as well as nonlinear prediction. Results obtained in all instances considered indicate that there is no discernible evidence to suggest that the daily flow sequence of the Benue River exhibit nonlinear deterministic chaotic signatures. Thus, it may be conjectured that the daily flow time series span a wide dynamical range between deterministic chaos and periodic signal contaminated with additive noise;that is, by either measurement or dynamical noise. However, contradictory results abound on the existence of low-dimensional chaos in daily streamflows. Hence, it is paramount to note that if the existence of low-dimension deterministic component is reliably verified, it is necessary to investigate its origin, dependence on the space-time behavior of precipitation and therefore on climate and role of the inflow-runoff mechanism.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11332006 and 11272233)the National Key Basic Research and Development Program of China(Grant No.2012CB720101)
文摘The present experimental work focuses on a new model for space-time correlation and the scale-dependencies of convection velocity and sweep velocity in turbulent boundary layer over a flat wail. A turbulent boundary layer flow at Reo = 2460 is measured by tomographic particle image velocimetry (tomographic PIV). It is demonstrated that arch, cane, and hairpin vortices are dominant in the logarithmic layer. Hairpins and hairpin packets are responsible for the elongated low-momentum zones observed in the instantaneous flow field. The conditionally-averaged coherent structures systemically illustrate the key roles of hairpin vortice in the turbulence dynamic events, such as ejection and sweep events and energy transport. The space-time correlations of instantaneous streamwise fluctuation velocity are calculated and confirm the new elliptic model for the space-time correlation instead of Taylor hypothesis. The convection velocities derived from the space-time correlation and conditionally-averaged method both suggest the scaling with the local mean velocity in the logarithmic layer. Convection velocity result based on Fourier decomposition (FD) shows stronger scale- dependency in the spanwise direction than in streamwise direction. Compared with FD, the proper orthogonal decomposition (POD) has a distinct distribution of convection velocity for the large- and small-scales which are separated in light of their contributions of turbulent kinetic energy.
文摘The objective of this paper is to utilize images of spatial and temporal fluctuations of temperature over the Earth to study the global climate variation. We illustrated that monthly temperature observations from weather stations could be decomposed as components with different time scales based on their spectral distribution. Kolmogorov-Zurbenko (KZ) filters were applied to smooth and interpolate gridded temperature data to construct global maps for long-term (≥ 6 years) trends and El Nino-like (2 to 5 years) movements over the time period of 1893 to 2008. Annual temperature seasonality, latitude and altitude effects have been carefully accounted for to capture meaningful spatiotemporal patterns of climate variability. The result revealed striking facts about global temperature anomalies for specific regions. Correlation analysis and the movie of thermal maps for El Nino-like component clearly supported the existence of such climate fluctuations in time and space.
文摘A direction-of-arrival (DOA) estimation algorithm based on direct data domain (D3) approach is presented. This method can accuracy estimate DOA using one snapshot modified data, called the temporal and spatial two-dimensional vector reconstruction (TSR) method. The key idea is to apply the D3 approach which can extract the signal of given frequency but null out other frequency signals in temporal domain. Then the spatial vector reconstruction processing is used to estimate the angle of the spatial coherent signal source based on extract signal data. Compared with the common temporal and spatial processing approach, the TSR method has a lower computational load, higher real-time performance, robustness and angular accuracy of DOA. The proposed algorithm can be directly applied to the phased array radar of coherent pulses. Simulation results demonstrate the performance of the proposed technique.
基金Supported by the National Natural Science Foundation of China(6 95 710 2 0 ) and the Research Fund for the Doctoral Program of H
文摘The electron concentration horizontal gradient vector of the ionosphere and its south-north and east-west components over Chongqing station are analyzed and calculated, using the first approximation, time correlation and space correlation and another approach introduced. And then, the validity of the two methods is analyzed and compared.