Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differentia...Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differential evolution algorithm?based on ensemble of constraint handling techniques and multi-population?framework, called ECMPDE. First, handling three improved variants of differential evolution algorithms are dynamically matched with two constraint handling techniques through the constraint allocation mechanism. Each combination includes three variants with corresponding constraint handling technique?and these combinations are in the set. Second, the population is divided into three smaller subpopulations and one larger reward subpopulation. Then a combination with three constraint algorithms is randomly selected from the set, and the three constraint algorithms are run in three sub-populations respectively. According to the improvement of fitness value, the optimal constraint?algorithm is selected to run on the reward sub-population, which can share?information and close cooperation among populations. In order to verify the effectiveness of the proposed algorithm, 12 standard constraint optimization problems?and 10 engineering constraint optimization problems are tested. The experimental results show that ECMPDE is an effective algorithm for solving constraint optimization problems.展开更多
Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select...Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select the web service composition with the highest comprehensive QoS is a NP hard problem. In this paper, an improved multi population genetic algorithm is proposed. Cosine adaptive operator is added to the algorithm to avoid premature algorithm caused by improper genetic operator and the disadvantage of destroying excellent individuals in later period. Experimental results show that compared with the common genetic algorithm and multi population genetic algorithm, this algorithm has the advantages of shorter time consumption and higher accuracy, and effectively avoids the loss of effective genes in the population.展开更多
1 INTRODUCTIONAfter Prausnitz et al.published the perturbed hard-sphere chain theory(PHCT),manymodified theories have been put forward,such as the perturbed soft-sphere chain theory(PSCT),the perturbed anisotropic cha...1 INTRODUCTIONAfter Prausnitz et al.published the perturbed hard-sphere chain theory(PHCT),manymodified theories have been put forward,such as the perturbed soft-sphere chain theory(PSCT),the perturbed anisotropic chain theory(PACT)and the associated perturbedanisotropic chain theory(APACT).These theories are all concerned with the parameter3c.But,Wertheim in his work proved that the free energy of hard-sphere chain couldbe calculated without 3c.Induced by the work done by Wertheim,Chapman展开更多
Steel structures are widely used;however,their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective.Therefore,a multi-population particle swarm optimization(MPPSO)algo...Steel structures are widely used;however,their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective.Therefore,a multi-population particle swarm optimization(MPPSO)algorithm is developed to optimize the weight of steel frames according to standard design codes.Modifications are made to improve the algorithm performances including the constraint-based strategy,piecewise mean learning strategy and multi-population cooperative strategy.The proposed method is tested against the representative frame taken from American standards and against other steel frames matching Chinese design codes.The related parameter influences on optimization results are discussed.For the representative frame,MPPSO can achieve greater efficiency through reduction of the number of analyses by more than 65% and can obtain frame with the weight for at least 2.4%lighter.A similar trend can also be observed in cases subjected to Chinese design codes.In addition,a migration interval of 1 and the number of populations as 5 are recommended to obtain better MPPSO results.The purpose of the study is to propose a method with high efficiency and robustness that is not confined to structural scales and design codes.It aims to provide a reference for automatic structural optimization design problems even with dimensional complexity.The proposed method can be easily generalized to the optimization problem of other structural systems.展开更多
Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of...Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data.To predict and analyze the load growth of the industrial park,an improved back-propagation algorithm is employed.Furthermore,the study classifies users within the industrial park according to their specific power consumption and supply requirements.This user segmentation allows for the introduction of three constraints:node voltage,wire current,and capacity of DERs.By incorporating these constraints,the study constructs an optimization model for the distribution network in the industrial park,with the objective of minimizing the total operation and maintenance cost.The primary goal of these optimizations is to address the needs of DERs connected to the distribution network,while simultaneously mitigating their potential adverse impact on the network.Additionally,the study aims to enhance the overall energy efficiency of the industrial park through more efficient utilization of resources.展开更多
针对常规备自投装置不能实现链式结构串供的多个110 k V变电站中非开环点变电站在失电时的快速恢复供电问题,提出了一种适用于常规和智能化变电站,基于区域电网实时全景信息的区域备自投新方案。具体介绍了区域备自投原理和实现方案,以...针对常规备自投装置不能实现链式结构串供的多个110 k V变电站中非开环点变电站在失电时的快速恢复供电问题,提出了一种适用于常规和智能化变电站,基于区域电网实时全景信息的区域备自投新方案。具体介绍了区域备自投原理和实现方案,以及其与站域备自投、常规备自投、区域保护、区域稳控的关系等。RTDS试验及现场工程应用表明,所提出的区域备自投性能优越,能够实现区域电网发生故障时的快速恢复供电。展开更多
多种群方法已被证明是提高演化算法动态优化性能的重要方法之一。提出了多种群热力学遗传算法(multi-population based thermodynamic genetic algorithm,MPTDGA)。该算法使用一个概率向量在热力学遗传算法迭代过程中不断演化优化与竞...多种群方法已被证明是提高演化算法动态优化性能的重要方法之一。提出了多种群热力学遗传算法(multi-population based thermodynamic genetic algorithm,MPTDGA)。该算法使用一个概率向量在热力学遗传算法迭代过程中不断演化优化与竞争学习,环境变化时分化成三个概率向量,并分别抽样产生原对偶和随机迁入三个子种群,依据这三个种群和记忆种群最好解的情况,选择新的工作概率向量进入新环境进行学习。在动态背包问题上的实验结果表明,MPTDGA比原对偶遗传算法跟踪最优解的能力更强,有很好的多样性,非常适合求解0-1动态优化问题。展开更多
文摘Aimed at improving the insufficient search ability of constraint differential evolution with single constraint handling technique when solving complex optimization problem, this paper proposes a constraint differential evolution algorithm?based on ensemble of constraint handling techniques and multi-population?framework, called ECMPDE. First, handling three improved variants of differential evolution algorithms are dynamically matched with two constraint handling techniques through the constraint allocation mechanism. Each combination includes three variants with corresponding constraint handling technique?and these combinations are in the set. Second, the population is divided into three smaller subpopulations and one larger reward subpopulation. Then a combination with three constraint algorithms is randomly selected from the set, and the three constraint algorithms are run in three sub-populations respectively. According to the improvement of fitness value, the optimal constraint?algorithm is selected to run on the reward sub-population, which can share?information and close cooperation among populations. In order to verify the effectiveness of the proposed algorithm, 12 standard constraint optimization problems?and 10 engineering constraint optimization problems are tested. The experimental results show that ECMPDE is an effective algorithm for solving constraint optimization problems.
文摘Web quality of service (QoS) awareness requires not only the selection of specific services to complete specific tasks, but also the comprehensive quality of service of the whole web service composition. How to select the web service composition with the highest comprehensive QoS is a NP hard problem. In this paper, an improved multi population genetic algorithm is proposed. Cosine adaptive operator is added to the algorithm to avoid premature algorithm caused by improper genetic operator and the disadvantage of destroying excellent individuals in later period. Experimental results show that compared with the common genetic algorithm and multi population genetic algorithm, this algorithm has the advantages of shorter time consumption and higher accuracy, and effectively avoids the loss of effective genes in the population.
基金Supported by the National Nature Science Foundation of China.
文摘1 INTRODUCTIONAfter Prausnitz et al.published the perturbed hard-sphere chain theory(PHCT),manymodified theories have been put forward,such as the perturbed soft-sphere chain theory(PSCT),the perturbed anisotropic chain theory(PACT)and the associated perturbedanisotropic chain theory(APACT).These theories are all concerned with the parameter3c.But,Wertheim in his work proved that the free energy of hard-sphere chain couldbe calculated without 3c.Induced by the work done by Wertheim,Chapman
基金supported by National Natural Science Foundation of China(Grant Nos.52308142 and 52208185)Postdoctoral Fellowship Program of CPSF(No.GZC20233334)+1 种基金Special Support of Chongqing Postdoctoral Science Foundation(No.2021XM2039)National Key Research and Development Program of China(No.2022YFC3801700).
文摘Steel structures are widely used;however,their traditional design method is a trial-and-error procedure which is neither efficient nor cost effective.Therefore,a multi-population particle swarm optimization(MPPSO)algorithm is developed to optimize the weight of steel frames according to standard design codes.Modifications are made to improve the algorithm performances including the constraint-based strategy,piecewise mean learning strategy and multi-population cooperative strategy.The proposed method is tested against the representative frame taken from American standards and against other steel frames matching Chinese design codes.The related parameter influences on optimization results are discussed.For the representative frame,MPPSO can achieve greater efficiency through reduction of the number of analyses by more than 65% and can obtain frame with the weight for at least 2.4%lighter.A similar trend can also be observed in cases subjected to Chinese design codes.In addition,a migration interval of 1 and the number of populations as 5 are recommended to obtain better MPPSO results.The purpose of the study is to propose a method with high efficiency and robustness that is not confined to structural scales and design codes.It aims to provide a reference for automatic structural optimization design problems even with dimensional complexity.The proposed method can be easily generalized to the optimization problem of other structural systems.
基金supported by the Shanghai Municipal Social Science Foundation(No.2020BGL032).
文摘Taking an industrial park as an example,this study aims to analyze the characteristics of a distribution network that incorporates distributed energy resources(DERs).The study begins by summarizing the key features of a distribution network with DERs based on recent power usage data.To predict and analyze the load growth of the industrial park,an improved back-propagation algorithm is employed.Furthermore,the study classifies users within the industrial park according to their specific power consumption and supply requirements.This user segmentation allows for the introduction of three constraints:node voltage,wire current,and capacity of DERs.By incorporating these constraints,the study constructs an optimization model for the distribution network in the industrial park,with the objective of minimizing the total operation and maintenance cost.The primary goal of these optimizations is to address the needs of DERs connected to the distribution network,while simultaneously mitigating their potential adverse impact on the network.Additionally,the study aims to enhance the overall energy efficiency of the industrial park through more efficient utilization of resources.
文摘针对常规备自投装置不能实现链式结构串供的多个110 k V变电站中非开环点变电站在失电时的快速恢复供电问题,提出了一种适用于常规和智能化变电站,基于区域电网实时全景信息的区域备自投新方案。具体介绍了区域备自投原理和实现方案,以及其与站域备自投、常规备自投、区域保护、区域稳控的关系等。RTDS试验及现场工程应用表明,所提出的区域备自投性能优越,能够实现区域电网发生故障时的快速恢复供电。
基金国家自然科学基金 Grant No.61070009国家高技术研究发展计划(863计划) Grant No.2007AA01Z290~~
文摘多种群方法已被证明是提高演化算法动态优化性能的重要方法之一。提出了多种群热力学遗传算法(multi-population based thermodynamic genetic algorithm,MPTDGA)。该算法使用一个概率向量在热力学遗传算法迭代过程中不断演化优化与竞争学习,环境变化时分化成三个概率向量,并分别抽样产生原对偶和随机迁入三个子种群,依据这三个种群和记忆种群最好解的情况,选择新的工作概率向量进入新环境进行学习。在动态背包问题上的实验结果表明,MPTDGA比原对偶遗传算法跟踪最优解的能力更强,有很好的多样性,非常适合求解0-1动态优化问题。