In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterpart...In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.展开更多
High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
针对2.0~25.0μm波段传输的限制损耗问题,文章采用数值模拟方法研究影响碲基硫系光子晶体光纤(photonic crystal fiber,PCF)限制损耗的主要因素。光纤纤芯和包层材料采用Ge 20 As 20 Se 15 Te 45玻璃,通过改变纤芯直径、空气孔直径和空...针对2.0~25.0μm波段传输的限制损耗问题,文章采用数值模拟方法研究影响碲基硫系光子晶体光纤(photonic crystal fiber,PCF)限制损耗的主要因素。光纤纤芯和包层材料采用Ge 20 As 20 Se 15 Te 45玻璃,通过改变纤芯直径、空气孔直径和空气孔层数等参数进行2.0~25.0μm波段限制损耗的计算,结果表明,影响限制损耗的最大因素是纤芯直径,限制损耗随着纤芯直径和空气孔直径的增大而显著降低,随着空气孔层数的增加而降低;优化设计出一种低限制损耗的PCF,结果表明,当纤芯直径和节距为8.0μm、空气孔直径为7.2μm、包层空气孔层数为4时,该PCF在2.0~25.0μm波长范围的限制损耗低于1.4×10^(-6) dB/m,满足低损耗传输要求。文章研究结果对2.0~25.0μm波段光信号的传输具有一定的意义。展开更多
受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×...受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×10^(4)W^(–1)·m^(–1)的后向受激布里渊散射增益系数.研究显示在该结构的同种光学和声学模式下,更小的声光场有效模场面积具有更高的后向受激布里渊散射增益系数.还分析了硫系玻璃的光学损耗对后向受激布里渊散射的影响,发现当波导长度超过最优值后,斯托克斯光波功率开始下降,而增大泵浦光功率不仅可以提高斯托克斯光波功率的极大值,同时还会增大波导长度的最优值.当所输入的泵浦光功率为20 mW时,受激布里渊散射增益达到100 d B波导长度仅需要2 cm,这非常有利于光子器件的片上集成.展开更多
The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to r...The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research.展开更多
简单介绍了二维(2D)层状过渡金属硫族化合物(transition metal dichalcogenide,TMD)材料中的激子,具体介绍了TMD材料的优缺点以及目前研究所面临的现状和问题,其中合成高产率、高性能的单层TMD是TMD作为下一代电子材料进一步发展的关键...简单介绍了二维(2D)层状过渡金属硫族化合物(transition metal dichalcogenide,TMD)材料中的激子,具体介绍了TMD材料的优缺点以及目前研究所面临的现状和问题,其中合成高产率、高性能的单层TMD是TMD作为下一代电子材料进一步发展的关键挑战。详细综述了基于TMD中的激子对调控光致发光方法的最新进展,包括化学掺杂、衬底工程、抑制激子-激子湮灭(EEA)等方法,最后总结和展望了TMD材料目前研究现状存在的主要问题以及未来的需求与挑战。展开更多
基金supported by the Teli Fellowship from Beijing Institute of Technology,the National Natural Science Foundation of China(Nos.52303366,22173109).
文摘In recent years,low-dimensional transition metal chalcogenide(TMC)materials have garnered growing research attention due to their superior electronic,optical,and catalytic properties compared to their bulk counterparts.The controllable synthesis and manipulation of these materials are crucial for tailoring their properties and unlocking their full potential in various applications.In this context,the atomic substitution method has emerged as a favorable approach.It involves the replacement of specific atoms within TMC structures with other elements and possesses the capability to regulate the compositions finely,crystal structures,and inherent properties of the resulting materials.In this review,we present a comprehensive overview on various strategies of atomic substitution employed in the synthesis of zero-dimensional,one-dimensional and two-dimensional TMC materials.The effects of substituting elements,substitution ratios,and substitution positions on the structures and morphologies of resulting material are discussed.The enhanced electrocatalytic performance and photovoltaic properties of the obtained materials are also provided,emphasizing the role of atomic substitution in achieving these advancements.Finally,challenges and future prospects in the field of atomic substitution for fabricating low-dimensional TMC materials are summarized.
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.
文摘针对2.0~25.0μm波段传输的限制损耗问题,文章采用数值模拟方法研究影响碲基硫系光子晶体光纤(photonic crystal fiber,PCF)限制损耗的主要因素。光纤纤芯和包层材料采用Ge 20 As 20 Se 15 Te 45玻璃,通过改变纤芯直径、空气孔直径和空气孔层数等参数进行2.0~25.0μm波段限制损耗的计算,结果表明,影响限制损耗的最大因素是纤芯直径,限制损耗随着纤芯直径和空气孔直径的增大而显著降低,随着空气孔层数的增加而降低;优化设计出一种低限制损耗的PCF,结果表明,当纤芯直径和节距为8.0μm、空气孔直径为7.2μm、包层空气孔层数为4时,该PCF在2.0~25.0μm波长范围的限制损耗低于1.4×10^(-6) dB/m,满足低损耗传输要求。文章研究结果对2.0~25.0μm波段光信号的传输具有一定的意义。
文摘受激布里渊散射效应具有光谱线宽窄、频率稳定和增益方向敏感等优点,常用于激光器,慢光产生和微波光子滤波器等.本文基于As_(2)S_(3)硫系玻璃、以SiO_(2)为衬底设计了一种亚微米尺寸的带空气狭缝倒置结构脊型波导结构,具有高达8.22×10^(4)W^(–1)·m^(–1)的后向受激布里渊散射增益系数.研究显示在该结构的同种光学和声学模式下,更小的声光场有效模场面积具有更高的后向受激布里渊散射增益系数.还分析了硫系玻璃的光学损耗对后向受激布里渊散射的影响,发现当波导长度超过最优值后,斯托克斯光波功率开始下降,而增大泵浦光功率不仅可以提高斯托克斯光波功率的极大值,同时还会增大波导长度的最优值.当所输入的泵浦光功率为20 mW时,受激布里渊散射增益达到100 d B波导长度仅需要2 cm,这非常有利于光子器件的片上集成.
文摘The unique photocatalytic mechanism of S-scheme heterojunction can be used to study new and efficient photocatalysts.By carefully selecting semiconductors for S-scheme heterojunction photocatalysts,it is possible to reduce the rate of photogenerated carrier recombination and increase the conversion efficiency of light into energy.Chalcogenides are a group of compounds that include sulfides and selenides(e.g.,CdS,ZnS,Bi_(2)S_(3),MoS_(2),ZnSe,CdSe,and CuSe).Chalcogenides have attracted considerable attention as heterojunction photocatalysts owing to their narrow bandgap,wide light absorption range,and excellent photoreduction properties.This paper presents a thorough analysis of S-scheme heterojunction photocatalysts based on chalcogenides.Following an introduction to the fundamental characteristics and benefits of S-scheme heterojunction photocatalysts,various chalcogenide-based S-scheme heterojunction photocatalyst synthesis techniques are summarized.These photocatalysts are used in numerous significant photocatalytic reactions,in-cluding the reduction of carbon dioxide,synthesis of hydrogen peroxide,conversion of organic matter,generation of hydrogen from water,nitrogen fixation,degradation of organic pollutants,and sterilization.In addition,cutting-edge characterization techniques,including in situ characterization techniques,are discussed to validate the steady and transient states of photocatalysts with an S-scheme heterojunction.Finally,the design and challenges of chalcogenide-based S-scheme heterojunction photocatalysts are explored and recommended in light of state-of-the-art research.
文摘简单介绍了二维(2D)层状过渡金属硫族化合物(transition metal dichalcogenide,TMD)材料中的激子,具体介绍了TMD材料的优缺点以及目前研究所面临的现状和问题,其中合成高产率、高性能的单层TMD是TMD作为下一代电子材料进一步发展的关键挑战。详细综述了基于TMD中的激子对调控光致发光方法的最新进展,包括化学掺杂、衬底工程、抑制激子-激子湮灭(EEA)等方法,最后总结和展望了TMD材料目前研究现状存在的主要问题以及未来的需求与挑战。