期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
海上稠油油藏多元热流体吞吐开采气窜规律研究 被引量:4
1
作者 袁玉凤 宫汝祥 +2 位作者 张伟 王飞 冯祥 《重庆科技学院学报(自然科学版)》 CAS 2018年第4期49-52,73,共5页
多元热流体吞吐开采技术应用于渤海油田10余井次,油田开采程度大幅提升;但油藏存在大孔道,导致井间气窜现象日趋严重,油井的正常生产受到严重影响。针对此问题,以渤海A油田的油藏特点为基础,研究大孔道长度、大孔道渗透率倍数及大孔道... 多元热流体吞吐开采技术应用于渤海油田10余井次,油田开采程度大幅提升;但油藏存在大孔道,导致井间气窜现象日趋严重,油井的正常生产受到严重影响。针对此问题,以渤海A油田的油藏特点为基础,研究大孔道长度、大孔道渗透率倍数及大孔道位置对气窜规律的影响。研究表明:大孔道的长度及渗透率倍数与气窜程度、气窜时机呈正相关,大孔道与生产井的相对位置不同,其气窜规律也有所差异。 展开更多
关键词 多元热流体 吞吐开采 大孔道 气窜规律 气窜评价
下载PDF
Dynamic statistical information theory 被引量:3
2
作者 XING Xiusan 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2006年第1期1-37,共37页
In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and d... In recent years we extended Shannon static statistical information theory to dynamic processes and established a Shannon dynamic statistical information theory, whose core is the evolution law of dynamic entropy and dynamic information. We also proposed a corresponding Boltzmman dynamic statistical information theory. Based on the fact that the state variable evolution equation of respective dynamic systems, i.e. Fok- ker-Planck equation and Liouville diffusion equation can be regarded as their information symbol evolution equation, we derived the nonlinear evolution equations of Shannon dy- namic entropy density and dynamic information density and the nonlinear evolution equa- tions of Boltzmann dynamic entropy density and dynamic information density, that de- scribe respectively the evolution law of dynamic entropy and dynamic information. The evolution equations of these two kinds of dynamic entropies and dynamic informations show in unison that the time rate of change of dynamic entropy densities is caused by their drift, diffusion and production in state variable space inside the systems and coordinate space in the transmission processes; and that the time rate of change of dynamic infor- mation densities originates from their drift, diffusion and dissipation in state variable space inside the systems and coordinate space in the transmission processes. Entropy and in- formation have been combined with the state and its law of motion of the systems. Fur- thermore we presented the formulas of two kinds of entropy production rates and infor- mation dissipation rates, the expressions of two kinds of drift information flows and diffu- sion information flows. We proved that two kinds of information dissipation rates (or the decrease rates of the total information) were equal to their corresponding entropy produc- tion rates (or the increase rates of the total entropy) in the same dynamic system. We obtained the formulas of two kinds of dynamic mutual informations and dynamic channel capacities reflecting the dynamic dissipation characteristics in the transmission processes, which change into their maximum—the present static mutual information and static channel capacity under the limit case where the proportion of channel length to informa- tion transmission rate approaches to zero. All these unified and rigorous theoretical for- mulas and results are derived from the evolution equations of dynamic information and dynamic entropy without adding any extra assumption. In this review, we give an overview on the above main ideas, methods and results, and discuss the similarity and difference between two kinds of dynamic statistical information theories. 展开更多
关键词 evolution equation of Shannon information (entropy) evolution equation of Boltzmann informa-tion (entropy) information (entropy) flow information (entropy) diffusion entropy production rate informa- tion dissipation rate dynamic mutual infomation dynamic chamnel capacity.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部