In static or quasi-static wireless channel environments, secret key generation(SKG) based on wireless channels is vulnerable to active attacks due to the openness and invariance of public pilot, especially man-inthe-m...In static or quasi-static wireless channel environments, secret key generation(SKG) based on wireless channels is vulnerable to active attacks due to the openness and invariance of public pilot, especially man-inthe-middle(MITM) attacks, where attacker acts as a transparent relay to manipulate channel measurements and derive the generated keys. In order to fight against this attack, a dynamic private pilot is designed, where both private pilot and secret key are derived from the characteristics of wireless channels and private to third party. In static or quasi-static environments, we use singular value decomposition techniques to reconstitute the wireless channels to improve the randomness of the wireless channels. Private pilot can encrypt and authenticate the wireless channels, which can make channel state information intercepted by MITM attacker reduced to zero and the SKG rate close to that without attacks. Results of analysis and simulation show the proposed SKG scheme can withdraw the MITM attacks.展开更多
Recent studies show that ion channels/transporters play important roles in fundamental cellular functions that would be involved in the cancer process. We review the evidence for their expression and functioning in hu...Recent studies show that ion channels/transporters play important roles in fundamental cellular functions that would be involved in the cancer process. We review the evidence for their expression and functioning in human gastric cancer (GC), and evaluate the potential of cellular physiological approach in clinical management. Various types of ion channels, such as voltage-gated K<sup>+</sup> channels, intracellular Cl<sup>-</sup> channels and transient receptor potential channels have been found to express in GC cells and tissues, and to control cell cycles. With regard to water channels, aquaporin 3 and 5 play an important role in the progression of GC. Regulators of intracellular pH, such as anion exchanger, sodium-hydrogen exchanger, vacuolar H<sup>+</sup>-ATPases and carbonic anhydrases are also involved in tumorigenesis of GC. Their pharmacological manipulation and gene silencing affect cellular behaviours, suggesting their potential as therapeutic targets for GC. Our studies indicate the intracellular Cl<sup>-</sup> concentration could act as a mediator of cellular signaling and control cell cycle progression in GC cells. Further, we demonstrate the cytocidal effects of hypotonic shock on GC cells, and indicate that the blockade of Cl<sup>-</sup> channels/transporters enhances these effects by inhibiting regulatory volume decrease. A deeper understanding of molecular mechanisms may lead to the discovery of these cellular physiological approaches as a novel therapeutic strategy for GC.展开更多
Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an ai...Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an air-gapped computer has been proved in recent years, data exfiltration from such sys- tems is still considered to be a challenging task. In this paper we present Powermittcr, a novel approach that can exfiltrate data through an air-gapped computer via its power adapter. Our method utilizes the switched-mode pow- er supply, which exists in all of the laptops, desktop computers and servers nowadays. We demonstrate that a malware can indirectly con- trol the electromagnetic emission frequency of the power supply by leveraging the CPU utili- zation. Furthermore, we show that the emitted signals can be received and demodulated by a dedicated device. We present the proof of con- cept design of the power covert channel and implement a prototype of Powermitter consist- ing of a transmitter and a receiver. The trans- mitter leaks out data by using a variant binary frequency shift keying modulation, and the emitted signal can be captured and decoded by software based virtual oscilloscope through such covert channel. We tested Powermitter on three different computers. The experiment re-suits show the feasibility of this power covert channel. We show that our method can also be used to leak data from different types of embedded systems which use switching power supply.展开更多
The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.Howeve...The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes.展开更多
In this paper, we investigate the cohering and decohering power of the one-qubit Markovian channels with respect to coherence measures based on the l1-norm, the Renyi a-relative entropy and the Tsallis a-relative entr...In this paper, we investigate the cohering and decohering power of the one-qubit Markovian channels with respect to coherence measures based on the l1-norm, the Renyi a-relative entropy and the Tsallis a-relative entropy of coherence, respectively. The amplitude damping channel, phase damping channel, depolarizing channel, and flip channels axe analytically calculated. It shows that the decohering power of the amplitude damping channel on the x, y, and z basis is equal to each other. The same phenomenon can be seen for the phase damping channel and the flip channels. The cohering power for the phase damping channel and the flip channels on the x, y basis also equals to that on the z basis. However, the cohering and decohering power of the depolaxizing channel is independent to the reference basises. And the cohering power of the amplitude damping channel on the x, y basis is different to that on the z basis.展开更多
Ion channels,many expressed in insect neural and muscular systems,have drawn huge attention as primary targets of insecticides.With the recent technical breakthroughs in structural biology,especially in cryo-electron ...Ion channels,many expressed in insect neural and muscular systems,have drawn huge attention as primary targets of insecticides.With the recent technical breakthroughs in structural biology,especially in cryo-electron microscopy(cryo-EM),many new high-resolution structures of ion channel targets,apo or in complex with insecticides,have been solved,shedding light on the molecular mechanism of action of the insecticides and resistance mutations.These structures also provide accurate templates for structure-based insecticide screening and rational design.This review summarizes the recent progress in the structural studies of 5 ion channel families:the ryanodine receptor(RyR),the nicotinic acetylcholine receptor(nAChR),the voltage-gated sodium channel(VGSC),the transient receptor potential(TRP)channel,and the ligand-gated chloride channel(LGCC).We address the selectivity of the channel-targeting insecticides by examining the conservation of key coordinating residues revealed by the structures.The possible resistance mechanisms are proposed based on the locations of the identified resistance mutations on the 3D structures of the target channels and their impacts on the binding of insecticides.Finally,we discuss how to develop“green”insecticides with a novel mode of action based on these high-resolution structures to overcome the resistance.展开更多
This paper presents a 6 kb SRAM that uses a novel 10T cell to achieve a minimum operating voltage of 320 mV in a 130 nm CMOS process. A number of low power circuit techniques are included to enable the proposed SRAM t...This paper presents a 6 kb SRAM that uses a novel 10T cell to achieve a minimum operating voltage of 320 mV in a 130 nm CMOS process. A number of low power circuit techniques are included to enable the proposed SRAM to operate in the subthreshold region. The reverse short channel effect and the reverse narrow channel effect are utilized to improve the performance of the SRAM. A novel subthreshold pulse generation circuit produces an ideal pulse to make read operation stable. A floating write bit-line effectively reduces the standby leakage consumption. Finally, a short read bit-line makes the read operation fast and energy-saving. Measurements indicate that these techniques are effective, the SRAM can operate at 800 kHz and consume 1.94/zW at its lowest voltage (320 mV).展开更多
基金supported in part by National Natural Science Foundation of China under Grants No.61601514, 61401510, 61379006Project funded by China Postdoctoral Science Foundation: 2016M592990
文摘In static or quasi-static wireless channel environments, secret key generation(SKG) based on wireless channels is vulnerable to active attacks due to the openness and invariance of public pilot, especially man-inthe-middle(MITM) attacks, where attacker acts as a transparent relay to manipulate channel measurements and derive the generated keys. In order to fight against this attack, a dynamic private pilot is designed, where both private pilot and secret key are derived from the characteristics of wireless channels and private to third party. In static or quasi-static environments, we use singular value decomposition techniques to reconstitute the wireless channels to improve the randomness of the wireless channels. Private pilot can encrypt and authenticate the wireless channels, which can make channel state information intercepted by MITM attacker reduced to zero and the SKG rate close to that without attacks. Results of analysis and simulation show the proposed SKG scheme can withdraw the MITM attacks.
文摘Recent studies show that ion channels/transporters play important roles in fundamental cellular functions that would be involved in the cancer process. We review the evidence for their expression and functioning in human gastric cancer (GC), and evaluate the potential of cellular physiological approach in clinical management. Various types of ion channels, such as voltage-gated K<sup>+</sup> channels, intracellular Cl<sup>-</sup> channels and transient receptor potential channels have been found to express in GC cells and tissues, and to control cell cycles. With regard to water channels, aquaporin 3 and 5 play an important role in the progression of GC. Regulators of intracellular pH, such as anion exchanger, sodium-hydrogen exchanger, vacuolar H<sup>+</sup>-ATPases and carbonic anhydrases are also involved in tumorigenesis of GC. Their pharmacological manipulation and gene silencing affect cellular behaviours, suggesting their potential as therapeutic targets for GC. Our studies indicate the intracellular Cl<sup>-</sup> concentration could act as a mediator of cellular signaling and control cell cycle progression in GC cells. Further, we demonstrate the cytocidal effects of hypotonic shock on GC cells, and indicate that the blockade of Cl<sup>-</sup> channels/transporters enhances these effects by inhibiting regulatory volume decrease. A deeper understanding of molecular mechanisms may lead to the discovery of these cellular physiological approaches as a novel therapeutic strategy for GC.
基金supported by the National High Technology Research and Development Program of China ("863" Program) (Grant No. 2015AA016002)the National Basic Research Program of China ("973" Program) (Grant No. 2014CB340600)
文摘Air-gapped computers are isolated both logically and physically from all kinds of existing common communication channel, such as USB ports, wireless and wired net- works. Although the feasibility of infiltrating an air-gapped computer has been proved in recent years, data exfiltration from such sys- tems is still considered to be a challenging task. In this paper we present Powermittcr, a novel approach that can exfiltrate data through an air-gapped computer via its power adapter. Our method utilizes the switched-mode pow- er supply, which exists in all of the laptops, desktop computers and servers nowadays. We demonstrate that a malware can indirectly con- trol the electromagnetic emission frequency of the power supply by leveraging the CPU utili- zation. Furthermore, we show that the emitted signals can be received and demodulated by a dedicated device. We present the proof of con- cept design of the power covert channel and implement a prototype of Powermitter consist- ing of a transmitter and a receiver. The trans- mitter leaks out data by using a variant binary frequency shift keying modulation, and the emitted signal can be captured and decoded by software based virtual oscilloscope through such covert channel. We tested Powermitter on three different computers. The experiment re-suits show the feasibility of this power covert channel. We show that our method can also be used to leak data from different types of embedded systems which use switching power supply.
文摘The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11271237,11671244the Higher School Doctoral Subject Foundation of Ministry of Education of China under Grant No.20130202110001the Central Universities under Grants Nos.2016TS060 and 2016CBY003
文摘In this paper, we investigate the cohering and decohering power of the one-qubit Markovian channels with respect to coherence measures based on the l1-norm, the Renyi a-relative entropy and the Tsallis a-relative entropy of coherence, respectively. The amplitude damping channel, phase damping channel, depolarizing channel, and flip channels axe analytically calculated. It shows that the decohering power of the amplitude damping channel on the x, y, and z basis is equal to each other. The same phenomenon can be seen for the phase damping channel and the flip channels. The cohering power for the phase damping channel and the flip channels on the x, y basis also equals to that on the z basis. However, the cohering and decohering power of the depolaxizing channel is independent to the reference basises. And the cohering power of the amplitude damping channel on the x, y basis is different to that on the z basis.
基金provided by the NationalNatural Science Foundation of China(no.32022073 and 31972287 to Z.Y.)the Natural Science Foundation of Tianjin(no.19JCYBJC24500 to Z.Y.).
文摘Ion channels,many expressed in insect neural and muscular systems,have drawn huge attention as primary targets of insecticides.With the recent technical breakthroughs in structural biology,especially in cryo-electron microscopy(cryo-EM),many new high-resolution structures of ion channel targets,apo or in complex with insecticides,have been solved,shedding light on the molecular mechanism of action of the insecticides and resistance mutations.These structures also provide accurate templates for structure-based insecticide screening and rational design.This review summarizes the recent progress in the structural studies of 5 ion channel families:the ryanodine receptor(RyR),the nicotinic acetylcholine receptor(nAChR),the voltage-gated sodium channel(VGSC),the transient receptor potential(TRP)channel,and the ligand-gated chloride channel(LGCC).We address the selectivity of the channel-targeting insecticides by examining the conservation of key coordinating residues revealed by the structures.The possible resistance mechanisms are proposed based on the locations of the identified resistance mutations on the 3D structures of the target channels and their impacts on the binding of insecticides.Finally,we discuss how to develop“green”insecticides with a novel mode of action based on these high-resolution structures to overcome the resistance.
基金Project supported by the National Natural Science Foundation of China(No.61306039)the Next Generation of Information Technology for Sensing China(No.XDA06020401)
文摘This paper presents a 6 kb SRAM that uses a novel 10T cell to achieve a minimum operating voltage of 320 mV in a 130 nm CMOS process. A number of low power circuit techniques are included to enable the proposed SRAM to operate in the subthreshold region. The reverse short channel effect and the reverse narrow channel effect are utilized to improve the performance of the SRAM. A novel subthreshold pulse generation circuit produces an ideal pulse to make read operation stable. A floating write bit-line effectively reduces the standby leakage consumption. Finally, a short read bit-line makes the read operation fast and energy-saving. Measurements indicate that these techniques are effective, the SRAM can operate at 800 kHz and consume 1.94/zW at its lowest voltage (320 mV).