The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta re...The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta region of Nigeria. Using daily or 24-hourly annual maximum series (AMS) data with the Indian Meteorological Department (IMD) and the modified Chowdury Indian Meteorological Department (MCIMD) models were adopted to downscale the time series data. Mann-Kendall (MK) trend and Sen’s Slope Estimator (SSE) test showed a statistically significant trend for Uyo and Benin, while Port Harcourt and Warri showed mild trends. The Sen’s Slope magnitude and variation rate were 21.6, 10.8, 6.00 and 4.4 mm/decade, respectively. The trend change-point analysis showed the initial rainfall change-point dates as 2002, 2005, 1988, and 2000 for Uyo, Benin, Port Harcourt, and Warri, respectively. These prove positive changing climatic conditions for rainfall in the study area. Erosion and flood control facilities analysis and design in the Niger Delta will require the application of Non-stationary IDF modelling.展开更多
Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last...Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods.展开更多
Trend analysis and change point detection in a time series are frequent analysis tools.Change point detection is the identification of abrupt variation in the process behaviour due to natural or artificial changes,whe...Trend analysis and change point detection in a time series are frequent analysis tools.Change point detection is the identification of abrupt variation in the process behaviour due to natural or artificial changes,whereas trend can be defined as estimation of gradual departure from past norms.We analyze the time series data in the presence of trend,using Cox-Stuart methods together with the change point algorithms.We applied the methods to the nearsurface wind speed time series for Australia as an example.The trends in near-surface wind speeds for Australia have been investigated based upon our newly developed wind speed datasets,which were constructed by blending observational data collected at various heights using local surface roughness information.The trend in wind speed at 10 m is generally increasing while at 2 m it tends to be decreasing.Significance testing,change point analysis and manual inspection of records indicate several factors may be contributing to the discrepancy,such as systematic biases accompanying instrument changes,random data errors(e.g.accumulation day error)and data sampling issues.Homogenization technique and multiple-period trend analysis based upon change point detections have thus been employed to clarify the source of the inconsistencies in wind speed trends.展开更多
It is now well known that coastal urban local climate has been showing changing pattern due to global climate change. This communication attempts to explore fluctuating pattern of urban average monthly wind speed duri...It is now well known that coastal urban local climate has been showing changing pattern due to global climate change. This communication attempts to explore fluctuating pattern of urban average monthly wind speed during past 50 years (1961-2010). It shows peculiar results taking Karachi (24?53'N, 67?00'E), a coastal mega-city of Pakistan, as a case study. Mann-Kendall trend test shows that March, April and October and both summer and winter seasons show positive trends for the average monthly wind speed during the whole study period (1961-2010). For the earlier 25 years data, it has been found that January, March, May, August, November and December and annual wind speed data have shown the negative trends. Only summer season has shown the positive trend for the wind speed. Similarly, for the most recent 25 years data it has been found that January, February, March, April, May, June, October, November and December and annual and both summer and winter wind speed data have shown the positive trends showing some degree of change in wind speed pattern. Probabilistic analysis reveals that average monthly wind speed data sets follow lognormal, logistic, largest extreme value, and Weibull (two-and three-parameters) probability distributions. Change point analysis has also confirmed the change in the pattern of observed average monthly wind speed data near 1992. The analysis performed reveals the effect of global warming on the local urban wind speed which appears to be temporal non-stationary.展开更多
This paper mainly investigated the basic information about non-stationary trend change point patterns. After performing the investigation, the corresponding results show the existence of a trend, its magnitude, and ch...This paper mainly investigated the basic information about non-stationary trend change point patterns. After performing the investigation, the corresponding results show the existence of a trend, its magnitude, and change points in 24-hourly annual maximum series (AMS) extracted from monthly maximum series (MMS) data for thirty years (1986-2015) rainfall data for Uyo metropolis. Trend analysis was performed using Mann-Kendall (MK) test and Sen’s slope estimator (SSE) used to obtain the trend magnitude, while the trend change point analysis was conducted using the distribution-free cumulative sum test (CUSUM) and the sequential Mann-Kendall test (SQMK). A free CUSUM plot date of change point of rainfall trend as 2002 at 90% confidence interval was obtained from where the increasing trend started and became more pronounced in the year 2011, another change point year from the SQMK plot with the trend intensifying. The SSE gave an average rate of change in rainfall as 2.1288 and 2.16 mm/year for AMS and MMS time series data respectively. Invariably, the condition for Non-stationary concept application is met for intensity-duration-frequency modeling.展开更多
针对现阶段用电设备状态监测技术存在的处理速度较慢、准确率较低等问题,文中基于多突变点检测和模板匹配策略提出了一种用电设备在线状态监测方法。该方法在缓冲区模型和滑动窗口模型的基础上,利用多路搜索树突变点检测(Ternary Search...针对现阶段用电设备状态监测技术存在的处理速度较慢、准确率较低等问题,文中基于多突变点检测和模板匹配策略提出了一种用电设备在线状态监测方法。该方法在缓冲区模型和滑动窗口模型的基础上,利用多路搜索树突变点检测(Ternary Search Tree and Kolmogorov-Smirnov,TSTKS)算法形成窗口维度和缓冲区维度的特征向量,通过两种维度的模板匹配实现用电设备的运行状态匹配和状态切换时刻定位。基于家用电冰箱的仿真实验结果表明,所提方法具有检测速度快、准确率高等优点,可为用电设备状态监测领域提供参考。展开更多
With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,...With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,the quantity and agglomeration of population distribution can be estimated and visualized.It will provide a basis for a more rational urban planning.This paper takes Beijing as the research area and uses a new Luojia1-01 nighttime light image with high resolution,land use type data,Points of Interest(POI)data,and other data to construct the population spatial index system,establishing the index weight based on the principal component analysis.The comprehensive weight value of population distribution in the study area was then used to calculate the street population distribution of Beijing in 2018.Then the population spatial distribution was visualize using GIS technology.After accuracy assessments by comparing the result with the WorldPop data,the accuracy has reached 0.74.The proposed method was validated as a qualified method to generate population spatial maps.By contrast of local areas,Luojia 1-01 data is more suitable for population distribution estimation than the NPP/VIIRS(Net Primary Productivity/Visible infrared Imaging Radiometer)nighttime light data.More geospatial big data and mathematical models can be combined to create more accurate population maps in the future.展开更多
文摘The aim of this study is to establish the prevailing conditions of changing climatic trends and change point dates in four selected meteorological stations of Uyo, Benin, Port Harcourt, and Warri in the Niger Delta region of Nigeria. Using daily or 24-hourly annual maximum series (AMS) data with the Indian Meteorological Department (IMD) and the modified Chowdury Indian Meteorological Department (MCIMD) models were adopted to downscale the time series data. Mann-Kendall (MK) trend and Sen’s Slope Estimator (SSE) test showed a statistically significant trend for Uyo and Benin, while Port Harcourt and Warri showed mild trends. The Sen’s Slope magnitude and variation rate were 21.6, 10.8, 6.00 and 4.4 mm/decade, respectively. The trend change-point analysis showed the initial rainfall change-point dates as 2002, 2005, 1988, and 2000 for Uyo, Benin, Port Harcourt, and Warri, respectively. These prove positive changing climatic conditions for rainfall in the study area. Erosion and flood control facilities analysis and design in the Niger Delta will require the application of Non-stationary IDF modelling.
文摘Decline in wildlife populations is manifest globally, regionally and locally. A wildlife decline of 68% has been reported in Kenya’s rangelands with Baringo County experiencing more than 85% wildlife loss in the last four decades. Greater Kudu (Tragelaphus strepsiceros) is endemic to Lake Bogoria landscape in Baringo County and constitutes a major tourist attraction for the region necessitating use of its photo on the County’s logo and thus a flagship species. Tourism plays a central role in Baringo County’s economy and is a major source of potential growth and employment creation. The study was carried out to assess spatio-temporal change of dispersal areas of Greater Kudu (GK) in Lake Bogoria landscape in the last four years for enhanced adaptive management and improved livelihoods. GK population distribution primary data collected in December 2022 and secondary data acquired from Lake Bogoria National Game Reserve (LBNGR) for 2019 and 2020 were digitized using in a Geographic Information System (GIS). Measures of dispersion and point pattern analysis (PPA) were used to analyze dispersal of GK population using GIS. Spatio-temporal change of GK dispersal in LBNR was evident thus the null hypothesis was rejected. It is recommended that anthropogenic activities contributing to GK’s habitat degradation be curbed by providing alternative livelihood sources and promoting community adoption of sustainable technologies for improved livelihoods.
文摘Trend analysis and change point detection in a time series are frequent analysis tools.Change point detection is the identification of abrupt variation in the process behaviour due to natural or artificial changes,whereas trend can be defined as estimation of gradual departure from past norms.We analyze the time series data in the presence of trend,using Cox-Stuart methods together with the change point algorithms.We applied the methods to the nearsurface wind speed time series for Australia as an example.The trends in near-surface wind speeds for Australia have been investigated based upon our newly developed wind speed datasets,which were constructed by blending observational data collected at various heights using local surface roughness information.The trend in wind speed at 10 m is generally increasing while at 2 m it tends to be decreasing.Significance testing,change point analysis and manual inspection of records indicate several factors may be contributing to the discrepancy,such as systematic biases accompanying instrument changes,random data errors(e.g.accumulation day error)and data sampling issues.Homogenization technique and multiple-period trend analysis based upon change point detections have thus been employed to clarify the source of the inconsistencies in wind speed trends.
文摘It is now well known that coastal urban local climate has been showing changing pattern due to global climate change. This communication attempts to explore fluctuating pattern of urban average monthly wind speed during past 50 years (1961-2010). It shows peculiar results taking Karachi (24?53'N, 67?00'E), a coastal mega-city of Pakistan, as a case study. Mann-Kendall trend test shows that March, April and October and both summer and winter seasons show positive trends for the average monthly wind speed during the whole study period (1961-2010). For the earlier 25 years data, it has been found that January, March, May, August, November and December and annual wind speed data have shown the negative trends. Only summer season has shown the positive trend for the wind speed. Similarly, for the most recent 25 years data it has been found that January, February, March, April, May, June, October, November and December and annual and both summer and winter wind speed data have shown the positive trends showing some degree of change in wind speed pattern. Probabilistic analysis reveals that average monthly wind speed data sets follow lognormal, logistic, largest extreme value, and Weibull (two-and three-parameters) probability distributions. Change point analysis has also confirmed the change in the pattern of observed average monthly wind speed data near 1992. The analysis performed reveals the effect of global warming on the local urban wind speed which appears to be temporal non-stationary.
文摘This paper mainly investigated the basic information about non-stationary trend change point patterns. After performing the investigation, the corresponding results show the existence of a trend, its magnitude, and change points in 24-hourly annual maximum series (AMS) extracted from monthly maximum series (MMS) data for thirty years (1986-2015) rainfall data for Uyo metropolis. Trend analysis was performed using Mann-Kendall (MK) test and Sen’s slope estimator (SSE) used to obtain the trend magnitude, while the trend change point analysis was conducted using the distribution-free cumulative sum test (CUSUM) and the sequential Mann-Kendall test (SQMK). A free CUSUM plot date of change point of rainfall trend as 2002 at 90% confidence interval was obtained from where the increasing trend started and became more pronounced in the year 2011, another change point year from the SQMK plot with the trend intensifying. The SSE gave an average rate of change in rainfall as 2.1288 and 2.16 mm/year for AMS and MMS time series data respectively. Invariably, the condition for Non-stationary concept application is met for intensity-duration-frequency modeling.
文摘针对现阶段用电设备状态监测技术存在的处理速度较慢、准确率较低等问题,文中基于多突变点检测和模板匹配策略提出了一种用电设备在线状态监测方法。该方法在缓冲区模型和滑动窗口模型的基础上,利用多路搜索树突变点检测(Ternary Search Tree and Kolmogorov-Smirnov,TSTKS)算法形成窗口维度和缓冲区维度的特征向量,通过两种维度的模板匹配实现用电设备的运行状态匹配和状态切换时刻定位。基于家用电冰箱的仿真实验结果表明,所提方法具有检测速度快、准确率高等优点,可为用电设备状态监测领域提供参考。
基金Under the auspices of Natural Science Foundation of China(No.42071342,31870713)Beijing Natural Science Foundation Program(No.8182038)Fundamental Research Funds for the Central Universities(No.2015ZCQ-LX-01,2018ZY06)。
文摘With the continuous development of urbanization in China,the country’s growing population brings great challenges to urban development.By mastering the refined population spatial distribution in administrative units,the quantity and agglomeration of population distribution can be estimated and visualized.It will provide a basis for a more rational urban planning.This paper takes Beijing as the research area and uses a new Luojia1-01 nighttime light image with high resolution,land use type data,Points of Interest(POI)data,and other data to construct the population spatial index system,establishing the index weight based on the principal component analysis.The comprehensive weight value of population distribution in the study area was then used to calculate the street population distribution of Beijing in 2018.Then the population spatial distribution was visualize using GIS technology.After accuracy assessments by comparing the result with the WorldPop data,the accuracy has reached 0.74.The proposed method was validated as a qualified method to generate population spatial maps.By contrast of local areas,Luojia 1-01 data is more suitable for population distribution estimation than the NPP/VIIRS(Net Primary Productivity/Visible infrared Imaging Radiometer)nighttime light data.More geospatial big data and mathematical models can be combined to create more accurate population maps in the future.