期刊文献+
共找到2,386篇文章
< 1 2 120 >
每页显示 20 50 100
Land use and cover change and influencing factor analysis in the Shiyang River Basin,China
1
作者 ZHAO Yaxuan CAO Bo +4 位作者 SHA Linwei CHENG Jinquan ZHAO Xuanru GUAN Weijin PAN Baotian 《Journal of Arid Land》 SCIE CSCD 2024年第2期246-265,共20页
Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ... Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas. 展开更多
关键词 land use and cover classification land use and cover change(LUCC) climate change random forest accuracy assessment three-dimensional sampling method Shiyang River Basin
下载PDF
Comprehending drivers of land use land cover change from 1999 to 2021 in the Pithoragarh District,Kumaon Himalaya,Uttarakhand,India
2
作者 Mahika PHARTIYAL Sanjeev SHARMA 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2394-2407,共14页
The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial an... The Himalayan region has been experiencing stark impacts of climate change,demographic and livelihood pattern changes.The analysis of land use and land cover(LULC)change provides insights into the shifts in spatial and temporal patterns of landscape.These changes are the combined effects of anthropogenic and natural/climatic factors.The present study attempts to monitor and comprehend the main drivers behind LULC changes(1999-2021)in the Himalayan region of Pithoragarh district,Uttarakhand.Pithoragarh district is a border district,remotely located in the north-east region of Uttarakhand,India.The study draws upon primary and secondary data sources.A total of 400 household surveys and five group discussions from 38 villages were conducted randomly to understand the climate perception of the local community and the drivers of change.Satellite imagery,CRU(Climatic Research Unit)climate data and climate perception data from the field have been used to comprehensively comprehend,analyze,and discuss the trends and reasons for LULC change.GIS and remote sensing techniques were used to construct LULC maps.This multifaceted approach ensures comprehensive and corroborated information.Five classes were identified and formed viz-cultivation,barren,settlement,snow,and vegetation.Results show that vegetation and builtup have increased whereas cultivation,barren land,and snow cover have decreased.The study further aims to elucidate the causes behind LULC changes in the spatially heterogeneous region,distinguishing between those attributed to human activities,climate shifts,and the interconnected impacts of both.The study provides a comprehensive picture of the study area and delivers a targeted understanding of local drivers and their potential remedies by offering a foundation for formulating sustainable adaptation policies in the region. 展开更多
关键词 Himalayan region land use/land cover change Anthropogenic factors Climate change Socioecological system
下载PDF
Spatiotemporal characteristics and driving mechanisms of land use/land cover(LULC)changes in the Jinghe River Basin,China
3
作者 WANG Yinping JIANG Rengui +4 位作者 YANG Mingxiang XIE Jiancang ZHAO Yong LI Fawen LU Xixi 《Journal of Arid Land》 SCIE CSCD 2024年第1期91-109,共19页
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and... Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB. 展开更多
关键词 land use/land cover(LULC)changes driving mechanisms trajectory analysis geographical detector(Geodetector) Grain for Green Project Jinghe River Basin
下载PDF
Spatiotemporal dynamics of land use/land cover(LULC)changes and its impact on land surface temperature:A case study in New Town Kolkata,eastern India
4
作者 Bubun MAHATA Siba Sankar SAHU +2 位作者 Archishman SARDAR Laxmikanta RANA Mukul MAITY 《Regional Sustainability》 2024年第2期26-48,共23页
Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land ... Rapid urbanization creates complexity,results in dynamic changes in land and environment,and influences the land surface temperature(LST)in fast-developing cities.In this study,we examined the impact of land use/land cover(LULC)changes on LST and determined the intensity of urban heat island(UHI)in New Town Kolkata(a smart city),eastern India,from 1991 to 2021 at 10-a intervals using various series of Landsat multi-spectral and thermal bands.This study used the maximum likelihood algorithm for image classification and other methods like the correlation analysis and hotspot analysis(Getis–Ord Gi^(*) method)to examine the impact of LULC changes on urban thermal environment.This study noticed that the area percentage of built-up land increased rapidly from 21.91%to 45.63%during 1991–2021,with a maximum positive change in built-up land and a maximum negative change in sparse vegetation.The mean temperature significantly increased during the study period(1991–2021),from 16.31℃to 22.48℃in winter,29.18℃to 34.61℃in summer,and 19.18℃to 27.11℃in autumn.The result showed that impervious surfaces contribute to higher LST,whereas vegetation helps decrease it.Poor ecological status has been found in built-up land,and excellent ecological status has been found in vegetation and water body.The hot spot and cold spot areas shifted their locations every decade due to random LULC changes.Even after New Town Kolkata became a smart city,high LST has been observed.Overall,this study indicated that urbanization and changes in LULC patterns can influence the urban thermal environment,and appropriate planning is needed to reduce LST.This study can help policy-makers create sustainable smart cities. 展开更多
关键词 Urbanization land use/land cover (LULC)changes land surface temperature Urban heat island Hotspot analysis Smart city
下载PDF
An Analysis of Land Use and Land Cover Changes, and Implications for Conservation in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, 2002-2022
5
作者 Musekiwa Innocent Maruza Edson Gandiwa +3 位作者 Never Muboko Ishmael Sango Tawanda Tarakini Nobert Tafadzwa Mukomberanwa 《Open Journal of Ecology》 2024年第9期706-730,共25页
Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce... Understanding trends of land use land cover (LULC) changes is important for biodiversity monitoring and conservation planning, and identifying the areas affected by change and designing sustainable solutions to reduce the changes. The study aims to evaluate and quantify the historical changes in land use and land cover in Mukumbura (Ward 2), Mt Darwin, Zimbabwe, from 2002 to 2022. The objective of the study was to analyse the LULC changes in Ward 2 (Mukumbura), Mt Darwin, Northern Zimbabwe, for a period of 20 years using geospatial techniques. Landsat satellite images were processed using Google Earth Engine (GEE) and the supervised classification with maximum likelihood algorithm was employed to generate LULC maps between 2002 and 2022 with a five (5) year interval, investigating the following variables, forest cover, barren land, water cover and the fields. Findings revealed a substantial reduction in forest cover by 38.8%, water bodies (wetlands, ponds, and rivers) declined by 55.6%, whilst fields (crop/agricultural fields) increased by 93.3% and the barren land cover increased by 26.3% from 2002 to 2022. These findings point to substantial changes in LULC over the observed years. LULC changes have resulted in habitat fragmentation, reduced biodiversity, and the disruption of ecosystem functions. The study concludes that if these deforestation trends, cultivation, and settlement land expansion continue, the ward will have limited indigenous fruit trees. Therefore, the causes for LULC changes must be controlled, sustainable forest resources use practiced, hence the need to domesticate the indigenous fruit trees in arborloo toilets. 展开更多
关键词 Anthropogenic Activities DEFORESTATION Geospatial Analysis land use/land cover Supervised Classification
下载PDF
Trends of Land Use and Land Cover Change in the Savannah Ecological of the Protected Area Reserve Partielle de Dosso, Niger
6
作者 Amadou Issoufou Abdourhimou Moussa Boubacar +2 位作者 Habou Rabiou Soumana Idrissa Mahamane Ali 《Natural Resources》 2024年第3期61-68,共8页
Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case stu... Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case study area, this paper analyzed the long-term land use land cover change from 2002 to 2022. Satellite images were processed by using Google Earth Engine (GEE). Therefore, four major land cover classes were identified based on spectral characteristics of Land sat, namely, built-up, vegetation, cropland, bare land and water. The result revealed that barren and built-up areas increased at the expense of vegetation and water. From the four major land use land cover the large area is covered by vegetation which comprises about 192963.5 hectares followed by cropland and water consisting of 32506.43 and 1596.4 hectares respectively. The built-up area gained substantial area (most) during the study period. The reduction in some of the land cover/uses underlines the dangerous trend of the pressure poised by population growth and the changing functionality. Land cover change is influenced by a variety of societal factors operating on several spatial and temporal levels. The area estimates and spatial distributions of the LULC classes produced from the current study will assist local authorities, managers, and other stakeholders in decision-making and planning regarding forest land cover and uses. 展开更多
关键词 land use/cover change Detection CLASSIFICATION Dosso
下载PDF
Uphill or downhill?Cropland use change and its drivers from the perspective of slope spectrum 被引量:2
7
作者 PAN Sipei LIANG Jiale +1 位作者 CHEN Wanxu PENG Yelin 《Journal of Mountain Science》 SCIE CSCD 2024年第2期484-499,共16页
The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi... The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale. 展开更多
关键词 Cropland climbing land use change Slope spectrum Driving factors Geographically weighted regression Yangtze River Basin
下载PDF
Analysis on the land use and cover change in Tianjin Binhai New Area based on the remote sensing 被引量:1
8
作者 王丰 刘书明 +3 位作者 卢文虎 杜琼玮 姜伟男 李佳芮 《Marine Science Bulletin》 CAS 2014年第2期46-59,共14页
This paper carries out quantitative analysis on the land use/cover (LU/C) change of 13anjin Binhai New Area in recent 10 years through using land use transition matrix from the three-stage LU/C classification maps o... This paper carries out quantitative analysis on the land use/cover (LU/C) change of 13anjin Binhai New Area in recent 10 years through using land use transition matrix from the three-stage LU/C classification maps of 2000, 2005 and 2010 drafted by means of the National Land Classification System of China based on Landsat TM satellite remote sensing image and the Tianjin Binhai New Area 1:50 000 relief maps. On this basis, the impact of such driving factors as the economy and population on LU/C is further analyzed. The results show that the area of the building land in Binhai New Area has increased significantly over the ten years, and the greenland, wetland, and shoals of high ecological value have been dramatically transformed into the building land and unused land for the development and construction, and the change is more significant in the later five years. 展开更多
关键词 Binhai New Area remote sensing land use and cover change drivingfactors
下载PDF
Historical Changes and Multi-scenario Prediction of Land Use and Terrestrial Ecosystem Carbon Storage in China
9
作者 AN Yue TAN Xuelan +2 位作者 REN Hui LI Yinqi ZHOU Zhou 《Chinese Geographical Science》 SCIE CSCD 2024年第3期487-503,共17页
Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-R... Terrestrial carbon storage(CS)plays a crucial role in achieving carbon balance and mitigating global climate change.This study employs the Shared Socioeconomic Pathways and Representative Concentration Pathways(SSPs-RCPs)published by the Intergovernmental Panel on Climate Change(IPCC)and incorporates the Policy Control Scenario(PCS)regulated by China’s land management policies.The Future Land Use Simulation(FLUS)model is employed to generate a 1 km resolution land use/cover change(LUCC)dataset for China in 2030 and 2060.Based on the carbon density dataset of China’s terrestrial ecosystems,the study analyses CS changes and their relationship with land use changes spanning from 1990 to 2060.The findings indicate that the quantitative changes in land use in China from 1990 to 2020 are characterised by a reduction in the area proportion of cropland and grassland,along with an increase in the impervious surface and forest area.This changing trend is projected to continue under the PCS from 2020 to 2060.Under the SSPs-RCPs scenario,the proportion of cropland and impervious surface predominantly increases,while the proportions of forest and grassland continuously decrease.Carbon loss in China’s carbon storage from 1990 to 2020 amounted to 0.53×10^(12)kg,primarily due to the reduced area of cropland and grassland.In the SSPs-RCPs scenario,more significant carbon loss occurs,reaching a peak of8.07×10^(12)kg in the SSP4-RCP3.4 scenario.Carbon loss is mainly concentrated in the southeastern coastal area and the Beijing-TianjinHebei(BTH)region of China,with urbanisation and deforestation identified as the primary drivers.In the future,it is advisable to enhance the protection of forests and grassland while stabilising cropland areas and improving the intensity of urban land.These research findings offer valuable data support for China’s land management policy,land space optimisation,and the achievement of dual-carbon targets. 展开更多
关键词 land use change Future land use Simulation(FLUS)model carbon storage carbon density dataset land use scenario China
下载PDF
Response of ecosystem carbon storage to land use change from 1985 to 2050 in the Ningxia Section of Yellow River Basin,China
10
作者 LIN Yanmin HU Zhirui +5 位作者 LI Wenhui CHEN Haonan WANG Fang NAN Xiongxiong YANG Xuelong ZHANG Wenjun 《Journal of Arid Land》 SCIE CSCD 2024年第1期110-130,共21页
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this... Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas. 展开更多
关键词 carbon storage land use change nighttime light Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model patch-generating land use simulation(PLUS)model geographical detector(Geodetector) Yellow River Basin
下载PDF
Impacts of multi-scenario land use change on ecosystem services and ecological security pattern: A case study of the Yellow River Delta
11
作者 XueHua Cen Hua Zhang 《Research in Cold and Arid Regions》 CSCD 2024年第1期30-44,共15页
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio... The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development. 展开更多
关键词 land use change Multi-scenario simulation Ecosystem services Ecological security pattern The Yellow River Delta Circuit theory
下载PDF
Assessing Spatio-Temporal Land Cover Changes in Dhund River Basin, Eastern Rajasthan (India), Using Multi-Temporal Landsat Data
12
作者 Sadia Mazahir Akram Javed Mohd Yusuf Khanday 《Journal of Geographic Information System》 2024年第4期244-258,共15页
Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Lan... Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution. 展开更多
关键词 Dhund River landSAT land use/land cover change Detection Analysis RAJASTHAN
下载PDF
Application of Remote Sensing and Geographic Information System in Land Use and Land Cover Change
13
作者 王静 经卓玮 +2 位作者 马友华 王强 於忠祥 《Agricultural Science & Technology》 CAS 2014年第1期144-147,共4页
The integration and application of remote sensing (RS) and geographic in-formation system (GIS) in the study of the Land Use and Land Cover Change (LUCC) were summarized, as wel as researches on the monitoring d... The integration and application of remote sensing (RS) and geographic in-formation system (GIS) in the study of the Land Use and Land Cover Change (LUCC) were summarized, as wel as researches on the monitoring dynamic changes in LUCC, driving force and application examples of the integration and the application of RS and GIS in simulation research. The methods and technical ap-proaches of RS and GIS in LUCC research were discussed. Views on the existing problems of the integration and the application of RS and GIS were put forward, and the future developing direction of LUCC technology was forecasted. 展开更多
关键词 land cover/land use Remote sensing (RS) Geographic information sys-tem (GIS) Integration of RS and GIS
下载PDF
Mapping Energy Expansion: Remote Sensing Insights into Oil and Gas Infrastructure and Land Use Changes in Midland, TX
14
作者 Nastaran Abdoli Mahdi Alipour Mehrnaz Pasokhi 《Journal of Geoscience and Environment Protection》 2024年第7期89-108,共20页
Rapid expansion in global energy demand driven primarily by oil and gas consumption has spurred significant environmental concerns. This study delves into the intricate relationship between energy development and envi... Rapid expansion in global energy demand driven primarily by oil and gas consumption has spurred significant environmental concerns. This study delves into the intricate relationship between energy development and environmental impacts focusing on Midland County, Texas, a pivotal region within the Permian Basin. Leveraging satellite imagery and Geographic Information Systems (GIS) techniques, the research meticulously examines land use dynamics from 2001 to 2019. The findings illuminate a marked decline in vegetation health and density attributable to the burgeoning oil and gas infrastructure in the area. Moreover, the analysis underscores the emergence of barren lands and the displacement of agricultural areas, indicative of the profound alterations in land cover patterns over the study period. These insights underscore the urgent need for concerted efforts to mitigate the adverse environmental effects of energy expansion, emphasizing the importance of collaborative approaches to foster sustainable land use practices. Additionally, the study explores the socio-economic implications of land use changes, addressing how energy expansion affects local communities and economies. Previous studies have emphasized the need for comprehensive assessments of cumulative environmental impacts, advocating for the implementation of effective mitigation strategies. 展开更多
关键词 Remote Sensing land cover change Energy Infrastructure Energy Sprawl Texas
下载PDF
Migration and Spatiotemporal Land Cover Change: A Case of Bosomtwe Lake Basin, Ghana
15
作者 Richard Kwabena Adams Lingling Zhang Zongzhi Wang 《Advances in Remote Sensing》 2024年第1期18-40,共23页
Internal migration is highly valued due to its increasingly acknowledged potential for social and economic development. However, despite its significant contribution to the development of towns and cities, it has led ... Internal migration is highly valued due to its increasingly acknowledged potential for social and economic development. However, despite its significant contribution to the development of towns and cities, it has led to the deterioration of many ecosystems globally. Lake Bosomtwe, a natural Lake in Ghana and one of the six major meteoritic lakes in the world is affected by land cover changes caused by the rising effects of migration, population expansion, and urbanization, owing to the development of tourist facilities on the lakeshore. This study investigated land cover change trajectories using a post-classification comparison approach and identified the factors influencing alteration in the Lake Bosomtwe Basin. Using Landsat imagery, an integrated approach of remote sensing, geographical information systems (GIS), and statistical analysis was successfully employed to analyze the land cover change of the basin. The findings show that over the 17 years, the basin’s forest cover decreased significantly by 16.02%, indicating that population expansion significantly affects changes in land cover. Ultimately, this study will raise the awareness of stakeholders, decision-makers, policy-makers, government, and non-governmental agencies to evaluate land use development patterns, optimize land use structures, and provide a reference for the formulation of sustainable development policies to promote the sustainable development of the ecological environment. 展开更多
关键词 land cover change Supervised Classification MIGRATION landsat Imagery Environmental Sustainability
下载PDF
RESEARCH ACTIVITIES ON LAND USE/COVER CHANGE IN THE PAST TEN YEARS IN CHINA USING SPACE TECHNOLOGY 被引量:10
16
作者 庄大方 刘纪远 刘明亮 《Chinese Geographical Science》 SCIE CSCD 1999年第4期43-47,共5页
Land use/cover change, which in China is characterized by urbanization resulting in a decrease in arable land in the east along with a large area of grassland being cultivated in the west, has been accelerated by rapi... Land use/cover change, which in China is characterized by urbanization resulting in a decrease in arable land in the east along with a large area of grassland being cultivated in the west, has been accelerated by rapid economic development in the last years. All of the above changes will affect sustainable development in the next century. The Chinese Academy of Sciences is conducting a study of land use/cover change over the last ten years based on the integration of remote sensing and GIS technology to establish a multitemporal database covering all of China. Fundamental data for land use/cover for the year 1996 has already been developed by the Chinese Academy of Sciences. In order to reconstruct fundamental land use/cover data for the year 1986, a central data processing and analyzing system and a regional data acquisition, processing and analyzing system have been established and are joined together as a network. After the 1986 database is established, the comparative research on the reduction in arable land, urbanization, desertification, changes in forest and grassland, and lake and wetland land use/cover change will be carried out. In addition, a transect for a key regional comparative study was selected along the Changjiang (Yangtze) River. The driving forces of these changes also will be extracted. The result of this study will be not only make a contribution to global land use/cover change research, but will also support decision making for sustainable national development. 展开更多
关键词 land use and land cover change reconstruction space technology
下载PDF
Impacts of Land Use and Cover Change on Land Surface Temperature in the Zhujiang Delta 被引量:18
17
作者 QIAN Le-Xiang CUI Hai-Shan CHANG Jie 《Pedosphere》 SCIE CAS CSCD 2006年第6期681-689,共9页
Remote sensing and geographic information systems (GIS) technologies were used to detect land use/cover changes (LUCC) and to assess their impacts on land surface temperature (LST) in the Zhujiang Delta. Multi-tempora... Remote sensing and geographic information systems (GIS) technologies were used to detect land use/cover changes (LUCC) and to assess their impacts on land surface temperature (LST) in the Zhujiang Delta. Multi-temporal Landsat TM and Landsat ETM+ data were employed to identify patterns of LUCC as well as to quantify urban expansion and the associated decrease of vegetation cover. The thermal infrared bands of the data were used to retrieve LST. The results revealed a strong and uneven urban growth,which caused LST to raise 4.56℃in the newly urbanized part of the study area. Overall, remote sensing and GIS technologies were effective approaches for monitoring and analyzing urban growth patterns and evaluating their impacts on LST. 展开更多
关键词 land surface temperature land use/cover change landsat ETM+ landsat TM Zhujiang Delta
下载PDF
Impacts of Regional-Scale Land Use/Land Cover Change on Diurnal Temperature Range 被引量:5
18
作者 HUA Wen-Jian CHEN Hai-Shan 《Advances in Climate Change Research》 SCIE 2013年第3期166-172,共7页
The NCAR Community Atmosphere Model(CAM4.0)was used to investigate the climate efects of land use/land cover change(LUCC).Two simulations,one with potential land cover without significant human intervention and the ot... The NCAR Community Atmosphere Model(CAM4.0)was used to investigate the climate efects of land use/land cover change(LUCC).Two simulations,one with potential land cover without significant human intervention and the other with current land use,were conducted.Results show that the impacts of LUCC on diurnal temperature range(DTR)are more significant than on mean surface air temperature.The global average annual DTR change due to LUCC is–0.1℃,which is three times as large as the mean temperature change.LUCC influences regional DTR as simulated by the model.In the mid-latitudes,LUCC leads to a decrease in DTR,which is mainly caused by the reduction in daily maximum temperature.However,there are some diferences in the low latitudes.The reduction in DTR in East Asia is mainly the result of the decrease in daily maximum temperature,while in India,the decrease in DTR is due to the increase in daily minimum temperature.In general,the LUCC significantly controls the DTR change through the changes in canopy evaporation and transpiration. 展开更多
关键词 land use/land cover change DIURNAL temperature range CLIMATE change
下载PDF
Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia 被引量:18
19
作者 Hadi Memarian Siva Kumar Balasundram +3 位作者 Jamal Bin Talib Christopher Teh Boon Sung Alias Mohd Sood Karim Abbaspour 《Journal of Geographic Information System》 2012年第6期542-554,共13页
Validity of CA-Markov in land use and cover change simulation was investigated at the Langat Basin, Selangor, Malaysia. CA-Markov validation was performed using validation metrics, allocation disagreement, quantity di... Validity of CA-Markov in land use and cover change simulation was investigated at the Langat Basin, Selangor, Malaysia. CA-Markov validation was performed using validation metrics, allocation disagreement, quantity disagreement, and figure of merit in a three-dimensional space. The figure of merit, quantity error, and allocation error for total landscape simulation using the 1990-1997 calibration data were 5.62%, 3.53%, and 6.13%, respectively. CA-Markov showed a poor performance for land use and cover change simulation due to uncertainties in the source data, the model, and future land use and cover change processes in the study area. 展开更多
关键词 land use and cover change CA-Markov Calibration VALIDATION
下载PDF
Land Use/Cover Changes and Environmental Consequences in Songnen Plain,Northeast China 被引量:8
20
作者 LIU Dianwei WANG Zongming +7 位作者 SONG Kaishan ZHANG Bai HU Liangjun HUANG Ni ZHANG Sumei LUO Ling ZHANG Chunhua JIANG Guangjia 《Chinese Geographical Science》 SCIE CSCD 2009年第4期299-305,共7页
The Songnen Plain in Northeast China,one of the key national bases of agricultural production,went through remarkable land use/cover changes in recent years.This study aimed to explore the long-term land use/cover cha... The Songnen Plain in Northeast China,one of the key national bases of agricultural production,went through remarkable land use/cover changes in recent years.This study aimed to explore the long-term land use/cover changes and the effects of these changes on the environment.The Landsat-based analysis showed that,during 1986-2000,cropland,built-up land and barren land had increased,among which cropland had the largest increase of 9,198km2 with an increase rate of 7.5%.Woodland,grassland,water body and swampland had decreased correspondingly,among which grassland had the most dramatic decrease of 6,127km2 with a decrease rate of 25.6%.The transition matrix results revealed that grassland,woodland and swampland were the three main land use types converted to cropland.Climate warming created the potential environment for the conversion of grassland and swampland into cropland.Land resources policy made by central and provincial governments of China affected the pattern and intensity of land use.Land use/cover changes accompanied by climatic variation brought out a series of environmental consequences,such as sand desertification of land,land salinization and alkalinization,grassland degradation,and more frequent floods.Under this circumstance,optimized land use structure and restoration measures are needed. 展开更多
关键词 land use change remote sensing sustainable development Songnen Plain China
下载PDF
上一页 1 2 120 下一页 到第
使用帮助 返回顶部