This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Lands...This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Landsat-8 Operational Land Imager(OLI),were chosen for subsequent assessments in October 1989,2001,2011 and 2019.The classified maps of 1989,2001,2011 and 2019 were created using the maximum likelihood classifier.Post-classification comparison showed an overall accuracy of 82.5%and a Kappa coefficient of 0.79 for the 2019 map.Results revealed a drastic decrease in closed-canopy and open-canopy forests by 117.4 and 271.6 km^(2),respectively,and an increase in agriculture/farm cultivation by 1512.8 km^(2).The two-way ANOVA test showed statistically significant differences in the area of various cover classes.Forest fragmentation was evaluated using the Landscape Fragmentation Tool(LFT v2.0)between 1989 and 2019.The large forest core(>2.00 km^(2))decreased from 149.4 to 296.7 km^(2),and a similar pattern was observed in medium forest core(1.00-2.00 km^(2))forests.On the contrary,the small core(<1.00 km^(2))forest increased from 124.8 to 145.3 km^(2) in 2019.The perforation area increased by 296.9 km^(2),and the edge effect decreased from 458.9 to 431.7 km^(2).The frequency of patches also increased by 119.1 km^(2).The closed and open canopy classes showed a decreasing trend with an annual rate of 0.58%and 1.35%,respectively.The broad implications of these findings can be seen in the studied region as well as other global ecological areas.They serve as an imperative baseline for afforestation and reforestation operations,highlighting the urgent need for efficient management,conservation,and restoration efforts.Based on these findings,sustainable land-use policies may be put into place that support local livelihoods,protect ecosystem services,and conserve biodiversity.展开更多
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrai...The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.展开更多
In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of...In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of change detection through bi-temporal feature interaction.FIBTNet designs a bi-temporal feature exchange architecture(EXA)and a bi-temporal difference extraction architecture(DFA).EXA improves the feature exchange ability of the model encoding process through multiple space,channel or hybrid feature exchange methods,while DFA uses the change residual(CR)module to improve the ability of the model decoding process to extract different features at multiple scales.Additionally,at the junction of encoder and decoder,channel exchange is combined with the CR module to achieve an adaptive channel exchange,which further improves the decision-making performance of model feature fusion.Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet achieves superior F1 scores,Intersection over Union(IoU),and Recall compared to mainstream building change detectionmodels,confirming its effectiveness and superiority in the field of remote sensing image change detection.展开更多
Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on t...Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on time series segmentation,most of them focus more on change point detection(CPD)methods and overlook the advances in boundary detection(BD)and state detection(SD)methods.In this paper,we categorize time series segmentation methods into CPD,BD,and SD methods,with a specific focus on recent advances in BD and SD methods.Within the scope of BD and SD,we subdivide the methods based on their underlying models/techniques and focus on the milestones that have shaped the development trajectory of each category.As a conclusion,we found that:(1)Existing methods failed to provide sufficient support for online working,with only a few methods supporting online deployment;(2)Most existing methods require the specification of parameters,which hinders their ability to work adaptively;(3)Existing SD methods do not attach importance to accurate detection of boundary points in evaluation,which may lead to limitations in boundary point detection.We highlight the ability to working online and adaptively as important attributes of segmentation methods,the boundary detection accuracy as a neglected metrics for SD methods.展开更多
Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Lan...Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.展开更多
Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance o...Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.展开更多
The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the la...The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.展开更多
Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case stu...Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case study area, this paper analyzed the long-term land use land cover change from 2002 to 2022. Satellite images were processed by using Google Earth Engine (GEE). Therefore, four major land cover classes were identified based on spectral characteristics of Land sat, namely, built-up, vegetation, cropland, bare land and water. The result revealed that barren and built-up areas increased at the expense of vegetation and water. From the four major land use land cover the large area is covered by vegetation which comprises about 192963.5 hectares followed by cropland and water consisting of 32506.43 and 1596.4 hectares respectively. The built-up area gained substantial area (most) during the study period. The reduction in some of the land cover/uses underlines the dangerous trend of the pressure poised by population growth and the changing functionality. Land cover change is influenced by a variety of societal factors operating on several spatial and temporal levels. The area estimates and spatial distributions of the LULC classes produced from the current study will assist local authorities, managers, and other stakeholders in decision-making and planning regarding forest land cover and uses.展开更多
Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection metho...Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement.展开更多
This paper provides a concise description of the philosophy, mathematics, and algorithms for estimating, detecting, and attributing climate changes. The estimation follows the spectral method by using empirical orthog...This paper provides a concise description of the philosophy, mathematics, and algorithms for estimating, detecting, and attributing climate changes. The estimation follows the spectral method by using empirical orthogonal functions, also called the method of reduced space optimal averaging. The detection follows the linear regression method, which can be found in most textbooks about multivariate statistical techniques. The detection algorithms are described by using the space-time approach to avoid the non-stationarity problem. The paper includes (1) the optimal averaging method for minimizing the uncertainties of the global change estimate, (2) the weighted least square detection of both single and multiple signals, (3) numerical examples, and (4) the limitations of the linear optimal averaging and detection methods.展开更多
An automatic approach is presented to track a wide screen in a multipurpose hall video scene. Once the screen is located, this system also generates the temporal rate of change by using the edge detection based method...An automatic approach is presented to track a wide screen in a multipurpose hall video scene. Once the screen is located, this system also generates the temporal rate of change by using the edge detection based method. Our approach adopts a scene segmentation algorithm that explores visual features (texture) and depth information to perform efficient screen localization. The cropped region which refers to the wide screen undergoes salient visual cues extraction to retrieve the emphasized changes required in rate-of- change computation. In addition to video document indexing and retrieval, this work can improve the machine vision capability in the behavior analysis and pattern recognition.展开更多
Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process sys...Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed.展开更多
The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°...The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05.展开更多
Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment.Although there are several published articles on laser scanning,there is a need to review them in t...Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment.Although there are several published articles on laser scanning,there is a need to review them in the context of underground mining applications.To this end,a holistic review of laser scanning is presented including progress in 3D scanning systems,data capture/processing techniques and primary applications in underground mines.Laser scanning technology has advanced significantly in terms of mobility and mapping,but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency,dynamics,and environmental influences such as dust and water.Studies suggest that laser scanning has matured over the years for change detection,clearance measurements and structure mapping applications.However,there is scope for improvements in lithology identification,surface parameter measurements,logistic tracking and autonomous navigation.Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer,geodetic networking and processing capacity remain limiting factors.Nevertheless,laser scanners are becoming an integral part of mine automation thanks to their affordability,accuracy and mobility,which should support their widespread usage in years to come.展开更多
Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time s...Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time series of process variables may have an important indication about the process operation.For example,in a batch process,the change points can correspond to the operations and phases defined by the batch recipe.Hence identifying change points can assist labelling the time series data.Various unsupervised algorithms have been developed for change point detection,including the optimisation approachwhich minimises a cost functionwith certain penalties to search for the change points.The Bayesian approach is another,which uses Bayesian statistics to calculate the posterior probability of a specific sample being a change point.The paper investigates how the two approaches for change point detection can be applied to process data analytics.In addition,a new type of cost function using Tikhonov regularisation is proposed for the optimisation approach to reduce irrelevant change points caused by randomness in the data.The novelty lies in using regularisation-based cost functions to handle ill-posed problems of noisy data.The results demonstrate that change point detection is useful for process data analytics because change points can produce data segments corresponding to different operating modes or varying conditions,which will be useful for other machine learning tasks.展开更多
Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian prod...Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian product based on local statistics. Increasing the number of samples in the local window can improve the estimation bias, but cause the loss of the estimated images spatial resolution. The limitations of these estimators lead to unclear contour of the disturbed region, and even the omission of fine change targets. In this paper, a CCD approach is proposed to detect fine scene changes from multi-temporal and multi-angle SAR image pairs. Multi-angle CCD estimator can improve the contrast between the change target and the background clutter by jointly accumulating singleangle alternative estimator results without further loss of image resolution. The sensitivity of detection performance to image quantity and angle interval is analyzed. Theoretical analysis and experimental results verify the performance of the proposed algorithm.展开更多
Recently,ground coverings change detection(CD)driven by bitemporal hyperspectral images(HSIs)has become a hot topic in the remote sensing community.There are two challenges in the HSI‐CD task:(1)attribute feature rep...Recently,ground coverings change detection(CD)driven by bitemporal hyperspectral images(HSIs)has become a hot topic in the remote sensing community.There are two challenges in the HSI‐CD task:(1)attribute feature representation of pixel pairs and(2)feature extraction of attribute patterns of pixel pairs.To solve the above problems,a novel spectral‐spatial sequence characteristics‐based convolutional transformer(S3C‐CT)method is proposed for the HSI‐CD task.In the designed method,firstly,an eigenvalue extrema‐based band selection strategy is introduced to pick up spectral information with salient attribute patterns.Then,a 3D tensor with spectral‐spatial sequence characteristics is proposed to represent the attribute features of pixel pairs in the bitemporal HSIs.Next,a fusion framework of the convolutional neural network(CNN)and Transformer encoder(TE)is designed to extract high‐order sequence semantic features,taking into account both local context information and global sequence dependencies.Specifically,a spatial‐spectral attention mechanism is employed to prevent information reduction and enhance dimensional interactivity between the CNN and TE.Finally,the binary change map is determined according to the fully‐connected layer.Experimental results on real HSI datasets indicated that the proposed S3C‐CT method outperforms other well‐known and state‐of‐the‐art detection approaches in terms of detection performance.展开更多
Environmental change is characterized as an alteration in the environment caused primarily by human activities and ecological processes that are natural. Given the fact that the southern part of the province of Haut-K...Environmental change is characterized as an alteration in the environment caused primarily by human activities and ecological processes that are natural. Given the fact that the southern part of the province of Haut-Katanga in the Democratic Republic of the Congo (DRC) is part of the African Copperbelt and has been a region of intense mining for decades, humans have affected the physical environment in various ways: such as overpopulation, suburbanization, wastage, deforestation. It is therefore important to track and control the changes in the area’s mining activities. This study aimed to analyze these changes using remote sensing techniques. Landsat satellite images from 2002 and 2022 were processed and classified to quantify changes in built-up area, agricultural land, and vegetation cover over the 20-year period. The classification results revealed sizable differences between the two time points, indicating considerable expansion of built-up land and declines in agricultural land and vegetation cover from 2002 to 2022 in Likasi. These findings provide evidence that urban growth has transformed the landscape in Likasi, likely at the expense of farmland and ecosystems. Further analysis of the remote sensing data could quantify the changes and model future trends to support sustainable land use planning. The land cover and land use analysis were performed with the assistance of the ERDAS 16.6.13 software by mapping LANDSAT data from two different years 2002 and 2022.展开更多
Ghana like all countries in Sub-Saharan region of Africa have long been undergoing intense land use land cover changes (LULCC) which have given rise to extensive forest loss (deforestation and degradation), loss of ar...Ghana like all countries in Sub-Saharan region of Africa have long been undergoing intense land use land cover changes (LULCC) which have given rise to extensive forest loss (deforestation and degradation), loss of arable land and land degradation. This study assessed the past LULCC in the Atwima Nwabiagya which contains the Barekese and Owabi Headworks) and the old Kumasi Local Assemblies’ areas in Ghana and projected the scenario in 2040 for business-as-usual (BAU). The synergies of satellite imagery of 1990, 2000, 2010 and 2020 were classified with an overall accuracy of 90%. Markov Cellular-Automata method was used to forecast the future LULC pattern after detecting main driving forces of LULCC. The findings showed an extensive increase in built up areas from 11% in 1990 to 39% in 2020 owing largely to 23% decrease in forest cover and 6% decrease in agricultural lands within the past 30 years (1990-2020). The projected LULC under the BAU scenario for 2040 showed built-up surge from 39% to 45% indicating additional forest loss from 43% in 2020 to 40% and decreasing agricultural land from 17% to 14%. The main driver for the LULCC is clearly anthropogenic driven as the human population in the study area keeps rising every censual year. This study exemplifies the fast-tracked forest loss, loss of arable land and challenges on ecosystem sustainability of the Barekese-Owabi-Kumasi landscape. The current and projected maps necessitate the apt implementation of suitable interventions such as reforestation, protection measures and policy decision in deliberate land use planning to mitigate further loss of forest cover and safeguard the Barekese and Owabi headworks.展开更多
基金This research was supported by project number(RSP2024R384)King Saud University,Riyadh,Saudi Arabia.
文摘This study comprehensively assessed long-term vegetation changes and forest fragmentation dynamics in the Himalayan temperate region of Pakistan from 1989 to 2019.Four satellite images,including Landsat-5 TM and Landsat-8 Operational Land Imager(OLI),were chosen for subsequent assessments in October 1989,2001,2011 and 2019.The classified maps of 1989,2001,2011 and 2019 were created using the maximum likelihood classifier.Post-classification comparison showed an overall accuracy of 82.5%and a Kappa coefficient of 0.79 for the 2019 map.Results revealed a drastic decrease in closed-canopy and open-canopy forests by 117.4 and 271.6 km^(2),respectively,and an increase in agriculture/farm cultivation by 1512.8 km^(2).The two-way ANOVA test showed statistically significant differences in the area of various cover classes.Forest fragmentation was evaluated using the Landscape Fragmentation Tool(LFT v2.0)between 1989 and 2019.The large forest core(>2.00 km^(2))decreased from 149.4 to 296.7 km^(2),and a similar pattern was observed in medium forest core(1.00-2.00 km^(2))forests.On the contrary,the small core(<1.00 km^(2))forest increased from 124.8 to 145.3 km^(2) in 2019.The perforation area increased by 296.9 km^(2),and the edge effect decreased from 458.9 to 431.7 km^(2).The frequency of patches also increased by 119.1 km^(2).The closed and open canopy classes showed a decreasing trend with an annual rate of 0.58%and 1.35%,respectively.The broad implications of these findings can be seen in the studied region as well as other global ecological areas.They serve as an imperative baseline for afforestation and reforestation operations,highlighting the urgent need for efficient management,conservation,and restoration efforts.Based on these findings,sustainable land-use policies may be put into place that support local livelihoods,protect ecosystem services,and conserve biodiversity.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
基金supported by the National Natural Science Foundation of China under Grant 62301119。
文摘The task of modeling and analyzing intercepted multifunction radars(MFRs)pulse trains is vital for cognitive electronic reconnaissance.Existing methodologies predominantly rely on prior information or heavily constrained models,posing challenges for non-cooperative applications.This paper introduces a novel approach to model MFRs using a Bayesian network,where the conditional probability density function is approximated by an autoregressive kernel mixture network(ARKMN).Utilizing the estimated probability density function,a dynamic programming algorithm is proposed for denoising and detecting change points in the intercepted MFRs pulse trains.Simulation results affirm the proposed method's efficacy in modeling MFRs,outperforming the state-of-the-art in pulse train denoising and change point detection.
基金supported in part by the Fund of National Sensor Network Engineering Technology Research Center(No.NSNC202103)the Natural Science Research Project in Colleges and Universities of Anhui Province(No.2022AH040155)the Undergraduate Teaching Quality and Teaching Reform Engineering Project of Chuzhou University(No.2022ldtd03).
文摘In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of change detection through bi-temporal feature interaction.FIBTNet designs a bi-temporal feature exchange architecture(EXA)and a bi-temporal difference extraction architecture(DFA).EXA improves the feature exchange ability of the model encoding process through multiple space,channel or hybrid feature exchange methods,while DFA uses the change residual(CR)module to improve the ability of the model decoding process to extract different features at multiple scales.Additionally,at the junction of encoder and decoder,channel exchange is combined with the CR module to achieve an adaptive channel exchange,which further improves the decision-making performance of model feature fusion.Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet achieves superior F1 scores,Intersection over Union(IoU),and Recall compared to mainstream building change detectionmodels,confirming its effectiveness and superiority in the field of remote sensing image change detection.
基金This work is supported by the National Key Research and Development Program of China(2022YFF1203001)National Natural Science Foundation of China(Nos.62072465,62102425)the Science and Technology Innovation Program of Hunan Province(Nos.2022RC3061,2023RC3027).
文摘Time series segmentation has attracted more interests in recent years,which aims to segment time series into different segments,each reflects a state of the monitored objects.Although there have been many surveys on time series segmentation,most of them focus more on change point detection(CPD)methods and overlook the advances in boundary detection(BD)and state detection(SD)methods.In this paper,we categorize time series segmentation methods into CPD,BD,and SD methods,with a specific focus on recent advances in BD and SD methods.Within the scope of BD and SD,we subdivide the methods based on their underlying models/techniques and focus on the milestones that have shaped the development trajectory of each category.As a conclusion,we found that:(1)Existing methods failed to provide sufficient support for online working,with only a few methods supporting online deployment;(2)Most existing methods require the specification of parameters,which hinders their ability to work adaptively;(3)Existing SD methods do not attach importance to accurate detection of boundary points in evaluation,which may lead to limitations in boundary point detection.We highlight the ability to working online and adaptively as important attributes of segmentation methods,the boundary detection accuracy as a neglected metrics for SD methods.
文摘Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.
文摘Real-time indoor camera localization is a significant problem in indoor robot navigation and surveillance systems.The scene can change during the image sequence and plays a vital role in the localization performance of robotic applications in terms of accuracy and speed.This research proposed a real-time indoor camera localization system based on a recurrent neural network that detects scene change during the image sequence.An annotated image dataset trains the proposed system and predicts the camera pose in real-time.The system mainly improved the localization performance of indoor cameras by more accurately predicting the camera pose.It also recognizes the scene changes during the sequence and evaluates the effects of these changes.This system achieved high accuracy and real-time performance.The scene change detection process was performed using visual rhythm and the proposed recurrent deep architecture,which performed camera pose prediction and scene change impact evaluation.Overall,this study proposed a novel real-time localization system for indoor cameras that detects scene changes and shows how they affect localization performance.
文摘The dynamic transformation of land use and land cover has emerged as a crucial aspect in the effective management of natural resources and the continual monitoring of environmental shifts. This study focused on the land use and land cover (LULC) changes within the catchment area of the Godavari River, assessing the repercussions of land and water resource exploitation. Utilizing LANDSAT satellite images from 2009, 2014, and 2019, this research employed supervised classification through the Quantum Geographic Information System (QGIS) software’s SCP plugin. Maximum likelihood classification algorithm was used for the assessment of supervised land use classification. Seven distinct LULC classes—forest, irrigated cropland, agricultural land (fallow), barren land, shrub land, water, and urban land—are delineated for classification purposes. The study revealed substantial changes in the Godavari basin’s land use patterns over the ten-year period from 2009 to 2019. Spatial and temporal dynamics of land use/cover changes (2009-2019) were quantified using three Satellite/Landsat images, a supervised classification algorithm and the post classification change detection technique in GIS. The total study area of the Godavari basin in Maharashtra encompasses 5138175.48 hectares. Notably, the built-up area increased from 0.14% in 2009 to 1.94% in 2019. The proportion of irrigated cropland, which was 62.32% in 2009, declined to 41.52% in 2019. Shrub land witnessed a noteworthy increase from 0.05% to 2.05% over the last decade. The key findings underscored significant declines in barren land, agricultural land, and irrigated cropland, juxtaposed with an expansion in forest land, shrub land, and urban land. The classification methodology achieved an overall accuracy of 80%, with a Kappa Statistic of 71.9% for the satellite images. The overall classification accuracy along with the Kappa value for 2009, 2014 and 2019 supervised land use land cover classification was good enough to detect the changing scenarios of Godavari River basin under study. These findings provide valuable insights for discerning land utilization across various categories, facilitating the adoption of appropriate strategies for sustainable land use in the region.
文摘Information on the dynamics of savannah is important to a country's plan to overcome the problems of uncontrolled development and environmental hazards. Taking the reserve partielle de Dosso, Niger as the case study area, this paper analyzed the long-term land use land cover change from 2002 to 2022. Satellite images were processed by using Google Earth Engine (GEE). Therefore, four major land cover classes were identified based on spectral characteristics of Land sat, namely, built-up, vegetation, cropland, bare land and water. The result revealed that barren and built-up areas increased at the expense of vegetation and water. From the four major land use land cover the large area is covered by vegetation which comprises about 192963.5 hectares followed by cropland and water consisting of 32506.43 and 1596.4 hectares respectively. The built-up area gained substantial area (most) during the study period. The reduction in some of the land cover/uses underlines the dangerous trend of the pressure poised by population growth and the changing functionality. Land cover change is influenced by a variety of societal factors operating on several spatial and temporal levels. The area estimates and spatial distributions of the LULC classes produced from the current study will assist local authorities, managers, and other stakeholders in decision-making and planning regarding forest land cover and uses.
基金supported by the National Natural Science Foundation of China (42074022)。
文摘Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement.
文摘This paper provides a concise description of the philosophy, mathematics, and algorithms for estimating, detecting, and attributing climate changes. The estimation follows the spectral method by using empirical orthogonal functions, also called the method of reduced space optimal averaging. The detection follows the linear regression method, which can be found in most textbooks about multivariate statistical techniques. The detection algorithms are described by using the space-time approach to avoid the non-stationarity problem. The paper includes (1) the optimal averaging method for minimizing the uncertainties of the global change estimate, (2) the weighted least square detection of both single and multiple signals, (3) numerical examples, and (4) the limitations of the linear optimal averaging and detection methods.
文摘An automatic approach is presented to track a wide screen in a multipurpose hall video scene. Once the screen is located, this system also generates the temporal rate of change by using the edge detection based method. Our approach adopts a scene segmentation algorithm that explores visual features (texture) and depth information to perform efficient screen localization. The cropped region which refers to the wide screen undergoes salient visual cues extraction to retrieve the emphasized changes required in rate-of- change computation. In addition to video document indexing and retrieval, this work can improve the machine vision capability in the behavior analysis and pattern recognition.
文摘Proposed a novel approach to detect changes in the product quality of process systems by using negative selection algorithms inspired by the natural immune system. The most important input variables of the process system was represented by artificial immune cells, from which product quality was inferred, instead of directly using the prod- uct quality which was hard to measure online, e.g. the ash content of coal flotation con- centrate. The experiment was presented and then the result was analyzed.
文摘The study area is located between the cities of Comitan (16°10'43"N and 92°04'20''W) a city with 150,000 inhabitants and La Esperanza (16°9'15''N and 91°52'5''W) a town with 3000 inhabitants. Both weather stations are 30 km from each other in the Chiapas State, México. 54 years of daily records of the series of maximum (<em>t</em><sub>max</sub>) and minimum temperatures (<em>t</em><sub>min</sub>) of the weather station 07205 Comitan that is on top of a house and 30 years of daily records of the weather station 07374 La Esperanza were analyzed. The objective is to analyze the evidence of climate change in the Comitan valley. 2.07% and 19.04% of missing data were filled, respectively, with the WS method. In order to verify homogeneity three methods were used: Standard Normal Homogeneity Test (SNHT), the Von Neumann method and the Buishand method. The heterogeneous series were homogenized using climatol. The trends of <em>t</em><sub>max</sub> and <em>t</em><sub>min</sub> for both weather stations were analyzed by simple linear regression, Sperman’s rho and Mann-Kendall tests. The Mann-Kendal test method confirmed the warming trend at the Comitan station for both variables with <em>Z<sub>MK</sub></em> statistic values equal to 1.57 (statistically not significant) and 4.64 (statistically significant). However, for the Esperanza station, it determined a cooling trend for tmin and a slight non-significant warming for <em>t</em><sub>max</sub> with a <em>Z</em><sub><em>MK</em></sub> statistic of -2.27 (statistically significant) and 1.16 (statistically not significant), for a significance level <em>α</em> = 0.05.
基金the Australian Coal Industry’s Research Program(ACARP)(Project No.C27057).
文摘Laser scanning can provide timely assessments of mine sites despite adverse challenges in the operational environment.Although there are several published articles on laser scanning,there is a need to review them in the context of underground mining applications.To this end,a holistic review of laser scanning is presented including progress in 3D scanning systems,data capture/processing techniques and primary applications in underground mines.Laser scanning technology has advanced significantly in terms of mobility and mapping,but there are constraints in coherent and consistent data collection at certain mines due to feature deficiency,dynamics,and environmental influences such as dust and water.Studies suggest that laser scanning has matured over the years for change detection,clearance measurements and structure mapping applications.However,there is scope for improvements in lithology identification,surface parameter measurements,logistic tracking and autonomous navigation.Laser scanning has the potential to provide real-time solutions but the lack of infrastructure in underground mines for data transfer,geodetic networking and processing capacity remain limiting factors.Nevertheless,laser scanners are becoming an integral part of mine automation thanks to their affordability,accuracy and mobility,which should support their widespread usage in years to come.
基金support by the Federal Ministry for Economic Affairs and Climate Action of Germany(BMWK)within the Innovation Platform“KEEN-Artificial Intelligence Incubator Laboratory in the Process Industry”(Grant No.01MK20014T)The research of L.B.is supported by the Swedish Research Council Grant VR 2018-03661。
文摘Change point detection becomes increasingly important because it can support data analysis by providing labels to the data in an unsupervised manner.In the context of process data analytics,change points in the time series of process variables may have an important indication about the process operation.For example,in a batch process,the change points can correspond to the operations and phases defined by the batch recipe.Hence identifying change points can assist labelling the time series data.Various unsupervised algorithms have been developed for change point detection,including the optimisation approachwhich minimises a cost functionwith certain penalties to search for the change points.The Bayesian approach is another,which uses Bayesian statistics to calculate the posterior probability of a specific sample being a change point.The paper investigates how the two approaches for change point detection can be applied to process data analytics.In addition,a new type of cost function using Tikhonov regularisation is proposed for the optimisation approach to reduce irrelevant change points caused by randomness in the data.The novelty lies in using regularisation-based cost functions to handle ill-posed problems of noisy data.The results demonstrate that change point detection is useful for process data analytics because change points can produce data segments corresponding to different operating modes or varying conditions,which will be useful for other machine learning tasks.
文摘Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian product based on local statistics. Increasing the number of samples in the local window can improve the estimation bias, but cause the loss of the estimated images spatial resolution. The limitations of these estimators lead to unclear contour of the disturbed region, and even the omission of fine change targets. In this paper, a CCD approach is proposed to detect fine scene changes from multi-temporal and multi-angle SAR image pairs. Multi-angle CCD estimator can improve the contrast between the change target and the background clutter by jointly accumulating singleangle alternative estimator results without further loss of image resolution. The sensitivity of detection performance to image quantity and angle interval is analyzed. Theoretical analysis and experimental results verify the performance of the proposed algorithm.
基金supported in part by by the National Key R&D Program of China under Grant 2022YFB3903402in part by the National Natural Science Foundation of China under Grant 42222106in part by the National Natural Science Foundation of China under Grant 61976234 and 42201340。
文摘Recently,ground coverings change detection(CD)driven by bitemporal hyperspectral images(HSIs)has become a hot topic in the remote sensing community.There are two challenges in the HSI‐CD task:(1)attribute feature representation of pixel pairs and(2)feature extraction of attribute patterns of pixel pairs.To solve the above problems,a novel spectral‐spatial sequence characteristics‐based convolutional transformer(S3C‐CT)method is proposed for the HSI‐CD task.In the designed method,firstly,an eigenvalue extrema‐based band selection strategy is introduced to pick up spectral information with salient attribute patterns.Then,a 3D tensor with spectral‐spatial sequence characteristics is proposed to represent the attribute features of pixel pairs in the bitemporal HSIs.Next,a fusion framework of the convolutional neural network(CNN)and Transformer encoder(TE)is designed to extract high‐order sequence semantic features,taking into account both local context information and global sequence dependencies.Specifically,a spatial‐spectral attention mechanism is employed to prevent information reduction and enhance dimensional interactivity between the CNN and TE.Finally,the binary change map is determined according to the fully‐connected layer.Experimental results on real HSI datasets indicated that the proposed S3C‐CT method outperforms other well‐known and state‐of‐the‐art detection approaches in terms of detection performance.
文摘Environmental change is characterized as an alteration in the environment caused primarily by human activities and ecological processes that are natural. Given the fact that the southern part of the province of Haut-Katanga in the Democratic Republic of the Congo (DRC) is part of the African Copperbelt and has been a region of intense mining for decades, humans have affected the physical environment in various ways: such as overpopulation, suburbanization, wastage, deforestation. It is therefore important to track and control the changes in the area’s mining activities. This study aimed to analyze these changes using remote sensing techniques. Landsat satellite images from 2002 and 2022 were processed and classified to quantify changes in built-up area, agricultural land, and vegetation cover over the 20-year period. The classification results revealed sizable differences between the two time points, indicating considerable expansion of built-up land and declines in agricultural land and vegetation cover from 2002 to 2022 in Likasi. These findings provide evidence that urban growth has transformed the landscape in Likasi, likely at the expense of farmland and ecosystems. Further analysis of the remote sensing data could quantify the changes and model future trends to support sustainable land use planning. The land cover and land use analysis were performed with the assistance of the ERDAS 16.6.13 software by mapping LANDSAT data from two different years 2002 and 2022.
文摘Ghana like all countries in Sub-Saharan region of Africa have long been undergoing intense land use land cover changes (LULCC) which have given rise to extensive forest loss (deforestation and degradation), loss of arable land and land degradation. This study assessed the past LULCC in the Atwima Nwabiagya which contains the Barekese and Owabi Headworks) and the old Kumasi Local Assemblies’ areas in Ghana and projected the scenario in 2040 for business-as-usual (BAU). The synergies of satellite imagery of 1990, 2000, 2010 and 2020 were classified with an overall accuracy of 90%. Markov Cellular-Automata method was used to forecast the future LULC pattern after detecting main driving forces of LULCC. The findings showed an extensive increase in built up areas from 11% in 1990 to 39% in 2020 owing largely to 23% decrease in forest cover and 6% decrease in agricultural lands within the past 30 years (1990-2020). The projected LULC under the BAU scenario for 2040 showed built-up surge from 39% to 45% indicating additional forest loss from 43% in 2020 to 40% and decreasing agricultural land from 17% to 14%. The main driver for the LULCC is clearly anthropogenic driven as the human population in the study area keeps rising every censual year. This study exemplifies the fast-tracked forest loss, loss of arable land and challenges on ecosystem sustainability of the Barekese-Owabi-Kumasi landscape. The current and projected maps necessitate the apt implementation of suitable interventions such as reforestation, protection measures and policy decision in deliberate land use planning to mitigate further loss of forest cover and safeguard the Barekese and Owabi headworks.