Objectives Menstruation is a normal physiological phenomenon among female which could be influenced by the process of acculturation.Few studies have explored the experience of menstrual symptom changes among internati...Objectives Menstruation is a normal physiological phenomenon among female which could be influenced by the process of acculturation.Few studies have explored the experience of menstrual symptom changes among international female students studying in China.Therefore,this paper aims to summarize international female students’experiences of menstrual symptom changes when they were studying in China and interpret these changes through considering the influence of acculturation on their social and academic lives.Methods We used a descriptive phenomenology approach.Structured in-depth face-to-face interviews were conducted between May and November 2019 among ten international female students studying in one Province located in south central China.Participants were those who reported having experienced menstrual symptom changes during the acculturation period,which was defined as the first six months of living in China.All interviews were audio-recorded,transcribed verbatim,and analyzed using NVivo 11.0 with the guidance of Colaizzi's seven-step method.Results The international female students’experiences of menstrual symptom changes were summarized and grouped into five main categories and 13 subcategories.The main categories include:1)demonstration of menstrual symptom changes,2)challenges of maintaining menstrual function in the new setting,3)coping styles to take care of menstrual health,4)consequences of the menstrual symptom changes,and 5)culture-based attitude toward menstruation.Conclusions International female students reported experiences of menstrual symptom changes,including somatic and psychological symptoms during the acculturation period.Culture barriers,academic stress,and sleep patterns are common factors influencing their menstrual symptom changes.More culturally-tailored interventions should be explored to improve the menstrual health of international female students in China.展开更多
The temperature, humidity, and vertical distribution of ozone in the Antarctic atmospheric boundary layer(ABL) and their seasonal changes are analyzed, by using the high-resolution profile data obtained during the I...The temperature, humidity, and vertical distribution of ozone in the Antarctic atmospheric boundary layer(ABL) and their seasonal changes are analyzed, by using the high-resolution profile data obtained during the International Polar Year 2008 to 2009 at Zhongshan Station, to further the understanding of the structure and processes of the ABL. The results show that the fre- quency of the convective boundary layer in the warm season accounts for 84% of its annual occurrence frequency. The frequency of the stable boundary layer in the cold season accounts for 71% of its annual occurrence frequency. A neutral boundary layer ap- pears rarely. The average altitude of the convective boundary layer determined by the parcel method is 600 m; this is 200 to 300 m higher than that over inland Antarctica. The average altitude of the top of the boundary layer determined by the potential tempera- ture gradient and humidity gradient is 1 200 m in the warm season and 1 500 m in the cold season. The vertical structures of ozone and specific humidity in the ABL exhibit obvious seasonal changes. The specific humidity is very high with greater vertical gradi- ent in the warm season and very low with a lesser gradient in the cold season under 2 000 m. The atmospheric ozone in the ABL is consumed by photochemical processes in the warm season, which results in a slight difference in altitude. The sub-highest ozone center is located in the boundary layer, indicating that the ozone transferred from the stratosphere to the troposphere reaches the low boundary layer during October and November in Antarctica.展开更多
By analyzing the target's motion pattern, in terms of the requirement for the performance indexes of the follow up system, the structure changing control and time optimal theory is proposed. The system's co...By analyzing the target's motion pattern, in terms of the requirement for the performance indexes of the follow up system, the structure changing control and time optimal theory is proposed. The system's control scheme from three different aspects(the dynamic response simulation, compound control simulation and dynamic tracking simulation) is also studied. And all the results proved the feasibility of the synthetical utilization of the open loop control, speed decreased control and position closed loop control.展开更多
For a long time, China has large population, so the labor-intensive products become the comparative advantage.This paper analyzes the influences of population age structure's changes on the export commodity structure...For a long time, China has large population, so the labor-intensive products become the comparative advantage.This paper analyzes the influences of population age structure's changes on the export commodity structure of our country and draws conclusions.展开更多
China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nut...China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs.展开更多
One of the most important characteristics of culture is that it is subject to change. The theory of cultural patterns in intercultural communication is used to study the change of Chinese students' living pattern, co...One of the most important characteristics of culture is that it is subject to change. The theory of cultural patterns in intercultural communication is used to study the change of Chinese students' living pattern, communication pattern and thinking pattern because of globalization. The factors and reasons of both change and the unchanged are analyzed and summarized.展开更多
The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are e...The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.展开更多
Nematode assemblage composition, trophic structure and biodiversity were followed over an annual cycle in a sandy beach of the Taiping Bay of Qingdao, China. Nematode assemblage in the sandy beach maintained a high ge...Nematode assemblage composition, trophic structure and biodiversity were followed over an annual cycle in a sandy beach of the Taiping Bay of Qingdao, China. Nematode assemblage in the sandy beach maintained a high genus diversity (75 genera). Mlero- laimus and Bathylaimus were the dominant genus of the nematode assemblage, accounting for 66% of the total nematode abundance. The nematodes' dominant trophic structure changed seasonally as a response to the seasonal changes in food quality. Epigrowth-feeder nematodes (2A) were the dominant trophic groups in the trophic structure with the highest abundance in spring because of phytoplankton bloom, while the feeding type ( 1 B) showed higher abundance in summer that was due to the increasing of sediment detritus after spring bloom. Furthermore, species diversity and evenness calculated on nematodes identified to the genus level displayed significant temporal changes, which was also reflected by the index of trophic diversity. According to the cluster analysis, the nematode community structure of the whole year was clearly separated into two periods (A and B). Biota-Envlron- ment matching (BIOENV) results showed that seawater temperature, sediment Chl a and grain size were responsible for the nema- tode community structure variation in spring and summer period (Period A). However, seawater/interstitial water temperature, interstitial water dissolved oxygen concentration,interstitial water salinity, and sediment Ph a a were more important in constructing the autumn and winter period (Period B) nematode community structure.展开更多
Small populations with low genetic diversity are prone to extinction. Knowledge on the genetic diversity and structure of small populations and their genetic response to anthropogenic effects are of critical importanc...Small populations with low genetic diversity are prone to extinction. Knowledge on the genetic diversity and structure of small populations and their genetic response to anthropogenic effects are of critical importance for conservation management. In this study, samples of Ancherythroculter nigrocauda, an endemic cyprinid fish from the upper reaches of Yangtze River, were collected from five sites to analyze their genetic diversity and population structure using mitochondrial cytochrome b gene and 14 microsatellite loci. Haplotype diversity, nucleotide diversity, and expected heterozygosity indicated that the A. nigrocauda populations had low genetic diversity, and decreased heavily from 2001 to 2016. Significant genetic differentiation was found among different populations in the cyt b gene and SSR markers based on the genetic differentiation index (F ST), whereas no differentiation was found in 2001. Haplotype genealogy showed that eight out of 15 haplotypes were private to one population. The SSR STRUCTURE analysis showed that there were four genetic clusters in the A. nigrocauda samples, with each population forming a single cluster, except for the Chishui River (CSR) and Mudong River (MDR) populations, which formed a common cluster. Therefore, loss of genetic diversity and increased genetic differentiation were found in the A. nigrocauda populations, which could be attributed to dam construction, overfishing, and water pollution in the upper Yangtze River. It is therefore recommended that the government should ban fishing, control water pollution, increase river connectivity, and establish artificial breeding and stocking.展开更多
This paper assesses the structure and ability of Local Seismological Gravity Monitoring Network (LSGMN) in China main tectonic zone and China Seismological Gravity Monitoring System (CSGMS) which formed after the proj...This paper assesses the structure and ability of Local Seismological Gravity Monitoring Network (LSGMN) in China main tectonic zone and China Seismological Gravity Monitoring System (CSGMS) which formed after the project of 'China Crustal Movement Observation Network (CCMON)' has been performed. The main conclusions drawn are as follows: ①LSGMN has good monitoring and prediction ability for the earthquake of M_s about 5. But it lacks ability to monitor and predict the strong earthquake of M_s>6 because of the little range of the observation network;②CSGMS has good ability to monitor and predict the earthquake of M_s>7, but the resolving power is not enough for the earthquake magnitude from M_s=6 to M_s=7 because the observation stations are too sparse.展开更多
The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China i...The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China in the past half century. It is found that temperature structures differ between seasons: a latitude temperature pattern in winter and a landform temperature pattern in summer, which indicate that the effect of landform on temperature structure is much stronger in summer than that in winter and the effect of latitudinal temperature is much stronger in winter than that in summer. The mechanisms of the seasonal difference in temperature structures are also discussed in this paper.展开更多
Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Cha...Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.展开更多
Land, as a key factor of production, is an appropriate indicator of national and regional economic structure transformation. Land use in the Changjiang (Yangtze) River Basin (CRB) since the 1950s has experienced t...Land, as a key factor of production, is an appropriate indicator of national and regional economic structure transformation. Land use in the Changjiang (Yangtze) River Basin (CRB) since the 1950s has experienced these changes. Industrialization has been the most powerful force of the change in the regional development of the CRB. Virtually all regional resources were put into this effort to modernize the industrial production and urban construction systems of the CRB whose industrialization and urbanization has been a success story, with impressive structural change in both production and land use. These changes are evident ih modem urban areas, but even more in traditionally rural areas. The regression analysis of regional development in the CRB over an extended period shows that the dominant factor in regional land use change is widespread industrialization in rural areas rather than the expansion of urban area. Thus, urbanization has had a limited influence on land use change in the CRB. A major task in realizing more sustainable land use in the future development of CRB is to relocate industrial activities from rural to urban areas.展开更多
Lithium cobalt oxide(LCO)is the dominating cathode materials for lithium-ion batteries(LIBs)deployed in consumer electronic devices for its superior volumetric energy density and electrochemical performances.The const...Lithium cobalt oxide(LCO)is the dominating cathode materials for lithium-ion batteries(LIBs)deployed in consumer electronic devices for its superior volumetric energy density and electrochemical performances.The constantly increasing demands of higher energy density urge to develop high-voltage LCO via a variety of strategies.However,the corresponding modification mechanism,especially the influence of the long-and short-range structural transitions at high-voltage on electrochemical performance,is still not well understood and needs further exploration.Based on ss-NMR,in-situ X-ray diffraction,and electrochemical performance results,it is revealed that the H3 to H1-3 phase transition dictates the structural reversibility and stability of LCO,thereby determining the electrochemical performance.The introduction of La and Al ions could postpone the appearance of H1-3 phase and induce various types of local environments to alleviate the volume variation at the atomic level,leading to better reversibility of the H1-3 phase and smaller lattice strain,and significantly improved cycle performance.Such a comprehensive long-range,local,and electronic structure characterization enables an in-depth understanding of the structural evolution of LCO,providing a guiding principle for developing high-voltage LCO for high energy density LIBs.展开更多
Acting as an important driving force for the change of the regional land use,the change of industrial structure also has some influences on the ecological environment.The assessment and mechanism analysis of these inf...Acting as an important driving force for the change of the regional land use,the change of industrial structure also has some influences on the ecological environment.The assessment and mechanism analysis of these influences will be beneficial to the sustainable development of regional economy and the im- provement of relationships between man and earth.Taking Chuzhou City in Anhui Province as an example,on the basis of a qualitative analysis of the influence of the development of differ- ent industry on the regional ecological environment,this paper builds the influence factor of industrial structure on natural envi- ronment and the influence index of industrial structure on natural environment,makes a quantitative assessment of the change of the industrial structure and its comprehensive influences on the eco- logical environment in the Chuzhou City from 1974 to 1995. Studies show that,during the analysed period,Chuzhou City's industrial structure has changed markedly,having undergone two transformations.The influence of industrial structure on natural environment from 1974 to 1995 increased as a whole,while from 1996 to 2004,the influence of industrial structure on natural en- vironment decreased year-on-year.These changes indicate that the regional change of industrial structure results in better ecological effects.Finally,we propose appropriate regulatory measures ac- cording to our research results.展开更多
Objective: The objective of this study is to construct the simulated patient training curriculum for OSCE examination for undergraduate nursing students and to explore the theoretical and practical foundation. Methods...Objective: The objective of this study is to construct the simulated patient training curriculum for OSCE examination for undergraduate nursing students and to explore the theoretical and practical foundation. Methods: To establish TSP training curriculum and SSP training curriculum, 30 experts were invited to finish the questionnaires which were proved by Delphi Method. Findings: We established the training curriculum of TSP and SSP, and set the weight of various curricula and teaching contents. Conclusions: The experts considered that the degree and importance of these two training curricula were comparable. This conclusion lays the foundation for applying these curricula to teaching practice and clinical practice, and enhancing the teaching outcome of undergraduate nursing students. Implications: This study provided a new way of assessing the clinic ability of nursing students.展开更多
The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example....The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.展开更多
The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separa...The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separation process were studied using X-ray and laser diffraction methods. The results revealed the relationship between variations in the mean particle size of activated powders and the milling time. The crystallite size, microstrain, lattice parameters and unit cell volumes were determined for different milling times in powder samples of quartz, hematite, dolomite, and magnetite from the beneficiation tailings. The main trends in the variation of the crystallite size of quartz, hematite, dolomite, and magnetite as a function mean particle size of powder samples were revealed. Changes in the particle shape as a function of the activation time was also investigated.展开更多
Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevati...Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevation gradient is important for understanding the responses of alpine plants andtheir growing environment to climate change. In this study, we studied plant coverage, plant height, species richness, soil water-holding capacity, soil organic carbon(SOC) and total nitrogen(N) on the northern slopes of the Qilian Mountains at elevations from2124 to 3665 m. The following conclusions were drawn:(1) With the increase of elevation, plant coverage and species richness first increased and then decreased, with the maximum values being at 3177 m.Plant height was significantly and negatively correlated with elevation(r=–0.97, P<0.01), and the ratio of decrease with elevation was 0.82 cm·100 m-1.(2) Both soil water-holding capacity and soil porosity increased on the northern slopes of the Qilian Mountains with the increase of elevation. The soil saturated water content at the 0-40 cm depth first increased and then stabilized with a further increase of elevation, and the average ratio of increase was2.44 mm·100 m-1. With the increase of elevation, the average bulk density at the 0-40 cm depth first decreased and then stabilized at 0.89 g/cm3.(3) With the increase of elevation, the average SOC content at the 0-40 cm depths first increased and then decreased,and the average total N content at the 0-40 cm depth first increased and then stabilized. The correlation between average SOC content and average total N content reached significant level. According to the results of this study, the distribution of plants showed a mono-peak curve with increasing elevation on the northern slopes of the Qilian Mountains. The limiting factor for plant growth at the high elevation areas was not soil physicochemical properties, and therefore,global warming will likely facilitate the development of plant at high elevation areas in the Qilian Mountains.展开更多
文摘Objectives Menstruation is a normal physiological phenomenon among female which could be influenced by the process of acculturation.Few studies have explored the experience of menstrual symptom changes among international female students studying in China.Therefore,this paper aims to summarize international female students’experiences of menstrual symptom changes when they were studying in China and interpret these changes through considering the influence of acculturation on their social and academic lives.Methods We used a descriptive phenomenology approach.Structured in-depth face-to-face interviews were conducted between May and November 2019 among ten international female students studying in one Province located in south central China.Participants were those who reported having experienced menstrual symptom changes during the acculturation period,which was defined as the first six months of living in China.All interviews were audio-recorded,transcribed verbatim,and analyzed using NVivo 11.0 with the guidance of Colaizzi's seven-step method.Results The international female students’experiences of menstrual symptom changes were summarized and grouped into five main categories and 13 subcategories.The main categories include:1)demonstration of menstrual symptom changes,2)challenges of maintaining menstrual function in the new setting,3)coping styles to take care of menstrual health,4)consequences of the menstrual symptom changes,and 5)culture-based attitude toward menstruation.Conclusions International female students reported experiences of menstrual symptom changes,including somatic and psychological symptoms during the acculturation period.Culture barriers,academic stress,and sleep patterns are common factors influencing their menstrual symptom changes.More culturally-tailored interventions should be explored to improve the menstrual health of international female students in China.
基金supported by the Chinese Polar Environment Comprehensive Investigation & Assessment Programmes(2011-2015)
文摘The temperature, humidity, and vertical distribution of ozone in the Antarctic atmospheric boundary layer(ABL) and their seasonal changes are analyzed, by using the high-resolution profile data obtained during the International Polar Year 2008 to 2009 at Zhongshan Station, to further the understanding of the structure and processes of the ABL. The results show that the fre- quency of the convective boundary layer in the warm season accounts for 84% of its annual occurrence frequency. The frequency of the stable boundary layer in the cold season accounts for 71% of its annual occurrence frequency. A neutral boundary layer ap- pears rarely. The average altitude of the convective boundary layer determined by the parcel method is 600 m; this is 200 to 300 m higher than that over inland Antarctica. The average altitude of the top of the boundary layer determined by the potential tempera- ture gradient and humidity gradient is 1 200 m in the warm season and 1 500 m in the cold season. The vertical structures of ozone and specific humidity in the ABL exhibit obvious seasonal changes. The specific humidity is very high with greater vertical gradi- ent in the warm season and very low with a lesser gradient in the cold season under 2 000 m. The atmospheric ozone in the ABL is consumed by photochemical processes in the warm season, which results in a slight difference in altitude. The sub-highest ozone center is located in the boundary layer, indicating that the ozone transferred from the stratosphere to the troposphere reaches the low boundary layer during October and November in Antarctica.
文摘By analyzing the target's motion pattern, in terms of the requirement for the performance indexes of the follow up system, the structure changing control and time optimal theory is proposed. The system's control scheme from three different aspects(the dynamic response simulation, compound control simulation and dynamic tracking simulation) is also studied. And all the results proved the feasibility of the synthetical utilization of the open loop control, speed decreased control and position closed loop control.
文摘For a long time, China has large population, so the labor-intensive products become the comparative advantage.This paper analyzes the influences of population age structure's changes on the export commodity structure of our country and draws conclusions.
基金This work was supported by the National Natural Science Foundation of China(72061147002 and 72373143)the National Social Science Fund of China(22&ZD085).
文摘China's crop structure has undergone significant changes in the last two decades since 2000,with an increase in the share of cereals,vegetables,and fruit,squeezing out other crops.As a result,land productivity,nutrient supply,and carbon emissions have changed.How to reallocate limited farmland among crops to achieve the multiple goals of agrifood systems becomes an important issue.This study explores the sources of land productivity and nutrition supply growth and carbon emissions reduction,and identifies the multiple roles of crop structural change from 2003 to 2020 based on a decomposition analysis.The results reveal that the growth within crops is still the primary driver in land productivity and nutrition supply and the reduction in carbon emissions.However,structural change also plays various roles at different periods.From 2003 to 2010,crop structural change increased the total calorie supply but lowered land productivity and contributed at least 70%of the total growth of carbon emissions.The crop structure was relatively stable,and their effects were modest from 2010 to 2015.From 2015 to 2020,the crop structural change began to play a greater role and generate synergistic effects in improving land productivity,micronutrient supply,and reducing carbon emissions,contributing to approximately a quarter of the growth of land productivity and 30%of total carbon emissions reduction.These results suggest that strategies for crop structural change should comprehensively consider its multiple impacts,aiming to achieve co-benefits while minimizing trade-offs.
文摘One of the most important characteristics of culture is that it is subject to change. The theory of cultural patterns in intercultural communication is used to study the change of Chinese students' living pattern, communication pattern and thinking pattern because of globalization. The factors and reasons of both change and the unchanged are analyzed and summarized.
基金supported by the Tianshan Talent Training Plan of Xinjiang,China(2022TSYCLJ0058,2022TSYCCX0001)the National Natural Science Foundation of China(2022D01D83,42377358).
文摘The drylands of China cover approximately 6.6×106 km2 and are home to approximately 5.8×10^(8)people,providing important ecosystem services for human survival and development.However,dryland ecosystems are extremely fragile and sensitive to external environmental changes.Land use and land cover(LULC)changes significantly impact soil structure and function,thus affecting the soil multifunctionality(SMF).However,the effect of LULC changes on the SMF in the drylands of China has rarely been reported.In this study,we investigated the characteristics of the SMF changes based on soil data in the 1980s from the National Tibetan Plateau Data Center.We explored the drivers of the SMF changes under different LULC types(including forest,grassland,shrubland,and desert)and used structural equation modeling to explore the main driver of the SMF changes.The results showed that the SMF under the four LULC types decreased in the following descending order:forest,grassland,shrubland,and desert.The main driver of the SMF changes under different LULC types was mean annual temperature(MAT).In addition to MAT,pH in forest,soil moisture(SM)and soil biodiversity index in grassland,SM in shrubland,and aridity index in desert are crucial factors for the SMF changes.Therefore,the SMF in the drylands of China is regulated mainly by MAT and pH,and comprehensive assessments of the SMF in drylands need to be performed regarding LULC changes.The results are beneficial for evaluating the SMF among different LULC types and predicting the SMF under global climate change.
基金The National Natural Science Foundation of China under contract No 40576061
文摘Nematode assemblage composition, trophic structure and biodiversity were followed over an annual cycle in a sandy beach of the Taiping Bay of Qingdao, China. Nematode assemblage in the sandy beach maintained a high genus diversity (75 genera). Mlero- laimus and Bathylaimus were the dominant genus of the nematode assemblage, accounting for 66% of the total nematode abundance. The nematodes' dominant trophic structure changed seasonally as a response to the seasonal changes in food quality. Epigrowth-feeder nematodes (2A) were the dominant trophic groups in the trophic structure with the highest abundance in spring because of phytoplankton bloom, while the feeding type ( 1 B) showed higher abundance in summer that was due to the increasing of sediment detritus after spring bloom. Furthermore, species diversity and evenness calculated on nematodes identified to the genus level displayed significant temporal changes, which was also reflected by the index of trophic diversity. According to the cluster analysis, the nematode community structure of the whole year was clearly separated into two periods (A and B). Biota-Envlron- ment matching (BIOENV) results showed that seawater temperature, sediment Chl a and grain size were responsible for the nema- tode community structure variation in spring and summer period (Period A). However, seawater/interstitial water temperature, interstitial water dissolved oxygen concentration,interstitial water salinity, and sediment Ph a a were more important in constructing the autumn and winter period (Period B) nematode community structure.
基金supported by the Special Program for Basic Science and Technology Research(2014FY120200)Research Project of China Three Gorges Corporation(0799570)+1 种基金Research Project of Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes(SXSN/4381)Sino BON-Inland Water Fish Diversity Observation Network
文摘Small populations with low genetic diversity are prone to extinction. Knowledge on the genetic diversity and structure of small populations and their genetic response to anthropogenic effects are of critical importance for conservation management. In this study, samples of Ancherythroculter nigrocauda, an endemic cyprinid fish from the upper reaches of Yangtze River, were collected from five sites to analyze their genetic diversity and population structure using mitochondrial cytochrome b gene and 14 microsatellite loci. Haplotype diversity, nucleotide diversity, and expected heterozygosity indicated that the A. nigrocauda populations had low genetic diversity, and decreased heavily from 2001 to 2016. Significant genetic differentiation was found among different populations in the cyt b gene and SSR markers based on the genetic differentiation index (F ST), whereas no differentiation was found in 2001. Haplotype genealogy showed that eight out of 15 haplotypes were private to one population. The SSR STRUCTURE analysis showed that there were four genetic clusters in the A. nigrocauda samples, with each population forming a single cluster, except for the Chishui River (CSR) and Mudong River (MDR) populations, which formed a common cluster. Therefore, loss of genetic diversity and increased genetic differentiation were found in the A. nigrocauda populations, which could be attributed to dam construction, overfishing, and water pollution in the upper Yangtze River. It is therefore recommended that the government should ban fishing, control water pollution, increase river connectivity, and establish artificial breeding and stocking.
基金The State Natural Science Foundation!(49974019)State Climb Plan
文摘This paper assesses the structure and ability of Local Seismological Gravity Monitoring Network (LSGMN) in China main tectonic zone and China Seismological Gravity Monitoring System (CSGMS) which formed after the project of 'China Crustal Movement Observation Network (CCMON)' has been performed. The main conclusions drawn are as follows: ①LSGMN has good monitoring and prediction ability for the earthquake of M_s about 5. But it lacks ability to monitor and predict the strong earthquake of M_s>6 because of the little range of the observation network;②CSGMS has good ability to monitor and predict the earthquake of M_s>7, but the resolving power is not enough for the earthquake magnitude from M_s=6 to M_s=7 because the observation stations are too sparse.
基金supported NKBRSF,PR China,No.2002CB111507The National Key of Science and Technology,No.2004BA508B22+2 种基金the Chinese National Natural Science Foundation(90302006,90511026)the Hundred Talents Program(2004401,KZCX3-SW-339)of the Chinese Academy of Sciencesthe Project for 0utstanding Scientists(40121101)of the National Natural Science Foundation of China.
文摘The data of 16o national meteorological observatory stations including the long-term monthly temperature data in China were analyzed to study the seasonal variation of the spatial temperature structures across China in the past half century. It is found that temperature structures differ between seasons: a latitude temperature pattern in winter and a landform temperature pattern in summer, which indicate that the effect of landform on temperature structure is much stronger in summer than that in winter and the effect of latitudinal temperature is much stronger in winter than that in summer. The mechanisms of the seasonal difference in temperature structures are also discussed in this paper.
基金the National Natural Science Foundation of China(Grant No.41625009)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA14010404)The authors also extend their thanks to the editors and reviewers for their positive and constructive comments and suggestions.
文摘Pore distribution and micro pore-throat structure characteristics are significant for tight oil reservoir evaluation, but their relationship remains unclear. This paper selects the tight sandstone reservoir of the Chang 7 member of the Xin’anbian Block in the Ordos Basin as the research object and analyzes the pore size distribution and micro pore-throat structure using field emission scanning electron microscopy(FE-SEM), high-pressure mercury injection(HPMI), highpressure mercury injection, and nuclear magnetic resonance(NMR) analyses. The study finds that:(1) Based on the pore size distribution, the tight sandstone reservoir is characterized by three main patterns with different peak amplitudes. The former peak corresponds to the nanopore scale, and the latter peak corresponds to the micropore scale. Then, the tight sandstone reservoir is categorized into three types: type 1 reservoir contains more nanopores with a nanopore-to-micropore volume ratio of 82:18;type 2 reservoir has a nanopore-to-micropore volume ratio of 47:53;and type 3 reservoir contains more micropores with a nanopore-to-micropore volume ratio of 35:65.(2) Affected by the pore size distribution, the throat radius distributions of different reservoir types are notably offset. The type 1 reservoir throat radius distribution curve is weakly unimodal, with a relatively dispersed distribution and peak ranging from 0.01 μm to 0.025 μm. The type 2 reservoir’s throat radius distribution curve is single-peaked with a wide distribution range and peak from 0.1 μm to 0.25 μm. The type 3 reservoir’s throat radius distribution curve is single-peaked with a relatively narrow distribution and peak from 0.1 μm to 0.25 μm. With increasing micropore volume, pore-throat structure characteristics gradually improve.(3) The correlation between micropore permeability and porosity exceeds that of nanopores, indicating that the development of micropores notably influences the seepage capacity. In the type 1 reservoir, only the mean radius and effective porosity have suitable correlations with the nanopore and micropore porosities. The pore-throat structure parameters of the type 2 and 3 reservoirs have reasonable correlations with the nanopore and micropore porosities, indicating that the development of these types of reservoirs is affected by the pore size distribution. This study is of great significance for evaluating lacustrine tight sandstone reservoirs in China. The research results can provide guidance for evaluating tight sandstone reservoirs in other regions based on pore size distribution.
基金Under the auspices of Knowledge Innovation Program of Chinese Academy of Sciences (No. KCZX2-307-01)
文摘Land, as a key factor of production, is an appropriate indicator of national and regional economic structure transformation. Land use in the Changjiang (Yangtze) River Basin (CRB) since the 1950s has experienced these changes. Industrialization has been the most powerful force of the change in the regional development of the CRB. Virtually all regional resources were put into this effort to modernize the industrial production and urban construction systems of the CRB whose industrialization and urbanization has been a success story, with impressive structural change in both production and land use. These changes are evident ih modem urban areas, but even more in traditionally rural areas. The regression analysis of regional development in the CRB over an extended period shows that the dominant factor in regional land use change is widespread industrialization in rural areas rather than the expansion of urban area. Thus, urbanization has had a limited influence on land use change in the CRB. A major task in realizing more sustainable land use in the future development of CRB is to relocate industrial activities from rural to urban areas.
基金funded by the National Natural Science Foundation of China(grant no.21761132030,21935009)National Key Research and Development Program of China(grant no.2016YFB0901502,2018YFB0905400)Collaboration project between Ningde City&Xiamen University(2017c002)。
文摘Lithium cobalt oxide(LCO)is the dominating cathode materials for lithium-ion batteries(LIBs)deployed in consumer electronic devices for its superior volumetric energy density and electrochemical performances.The constantly increasing demands of higher energy density urge to develop high-voltage LCO via a variety of strategies.However,the corresponding modification mechanism,especially the influence of the long-and short-range structural transitions at high-voltage on electrochemical performance,is still not well understood and needs further exploration.Based on ss-NMR,in-situ X-ray diffraction,and electrochemical performance results,it is revealed that the H3 to H1-3 phase transition dictates the structural reversibility and stability of LCO,thereby determining the electrochemical performance.The introduction of La and Al ions could postpone the appearance of H1-3 phase and induce various types of local environments to alleviate the volume variation at the atomic level,leading to better reversibility of the H1-3 phase and smaller lattice strain,and significantly improved cycle performance.Such a comprehensive long-range,local,and electronic structure characterization enables an in-depth understanding of the structural evolution of LCO,providing a guiding principle for developing high-voltage LCO for high energy density LIBs.
基金This paper was sponsored by the key project of National Natural Science Foundation of China (Grant Nos. 49831070, 40371106, 70341021).
文摘Acting as an important driving force for the change of the regional land use,the change of industrial structure also has some influences on the ecological environment.The assessment and mechanism analysis of these influences will be beneficial to the sustainable development of regional economy and the im- provement of relationships between man and earth.Taking Chuzhou City in Anhui Province as an example,on the basis of a qualitative analysis of the influence of the development of differ- ent industry on the regional ecological environment,this paper builds the influence factor of industrial structure on natural envi- ronment and the influence index of industrial structure on natural environment,makes a quantitative assessment of the change of the industrial structure and its comprehensive influences on the eco- logical environment in the Chuzhou City from 1974 to 1995. Studies show that,during the analysed period,Chuzhou City's industrial structure has changed markedly,having undergone two transformations.The influence of industrial structure on natural environment from 1974 to 1995 increased as a whole,while from 1996 to 2004,the influence of industrial structure on natural en- vironment decreased year-on-year.These changes indicate that the regional change of industrial structure results in better ecological effects.Finally,we propose appropriate regulatory measures ac- cording to our research results.
文摘Objective: The objective of this study is to construct the simulated patient training curriculum for OSCE examination for undergraduate nursing students and to explore the theoretical and practical foundation. Methods: To establish TSP training curriculum and SSP training curriculum, 30 experts were invited to finish the questionnaires which were proved by Delphi Method. Findings: We established the training curriculum of TSP and SSP, and set the weight of various curricula and teaching contents. Conclusions: The experts considered that the degree and importance of these two training curricula were comparable. This conclusion lays the foundation for applying these curricula to teaching practice and clinical practice, and enhancing the teaching outcome of undergraduate nursing students. Implications: This study provided a new way of assessing the clinic ability of nursing students.
基金Supported by the Natural Science Foundation of Shaanxi Province,China(2010JM5003)
文摘The influence of pore structure difference on rock electrical characteristics of reservoir and oil reservoir was analyzed taking Triassic Chang 6 reservoir in Block Yanwumao in the middle of Ordos Basin as an example. The relationship between the pore structure difference and the low resistivity oil layer was revealed and demonstrated through core observation, lab experiments, geological research, well log interpretation and trial production etc. The results show that there were two kinds of oil layers in Chang 6 oil layer set, normal oil layer and low resistivity oil layer in the region, corresponding to two types of pore structures, pore type mono-medium and micro-fracture-pore type double-medium; the development of micro-fracture changed greatly the micro-pore structure of the reservoir, and the pore structure difference had an important influence on the rock electrical characteristics of the extra-low permeability sandstone reservoir and oil reservoir; the normal oil layers had obvious characteristics of pore-type mono-medium, and were concentrated in Chang 61, Chang 6232 and Chang 62; the low resistivity oil layers had obvious characteristics of micro-fracture-pore type double-medium, which were mainly distributed in Chang 612 and Chang 63. The mud filtrate penetrated deep into the oil layers along the micro-cracks, leading to sharp reduction of resistivity, and thus low resistivity of the oil layer; the low resistivity oil layers had better storage capacity and higher productivity than the normal oil layers.
文摘The effects of mechanical activation in a planetary mill on the structural changes and microstructural characteristics of the components of ferruginous quartzite beneficiation railings generated by wet magnetic separation process were studied using X-ray and laser diffraction methods. The results revealed the relationship between variations in the mean particle size of activated powders and the milling time. The crystallite size, microstrain, lattice parameters and unit cell volumes were determined for different milling times in powder samples of quartz, hematite, dolomite, and magnetite from the beneficiation tailings. The main trends in the variation of the crystallite size of quartz, hematite, dolomite, and magnetite as a function mean particle size of powder samples were revealed. Changes in the particle shape as a function of the activation time was also investigated.
基金funded by National Key R&D Program of China(2017YFA0604801,2016YFC0501802)Natural Science Foundation of Qinghai Province(Grant No.2016-ZJ-910)+1 种基金CAS“Light of West China”Program(2016):Study on the soil moisture with the restoration process of degraded alpine meadows in the Three-River Headwater Region,ChinaQinghai innovation platform construction project(2017-ZJ-Y20)supported this work
文摘Elevation is one of key factors to affect changes in the environment, particularly changes in conditions of light, water and heat. Studying the soil physicochemical properties and vegetation structure along an elevation gradient is important for understanding the responses of alpine plants andtheir growing environment to climate change. In this study, we studied plant coverage, plant height, species richness, soil water-holding capacity, soil organic carbon(SOC) and total nitrogen(N) on the northern slopes of the Qilian Mountains at elevations from2124 to 3665 m. The following conclusions were drawn:(1) With the increase of elevation, plant coverage and species richness first increased and then decreased, with the maximum values being at 3177 m.Plant height was significantly and negatively correlated with elevation(r=–0.97, P<0.01), and the ratio of decrease with elevation was 0.82 cm·100 m-1.(2) Both soil water-holding capacity and soil porosity increased on the northern slopes of the Qilian Mountains with the increase of elevation. The soil saturated water content at the 0-40 cm depth first increased and then stabilized with a further increase of elevation, and the average ratio of increase was2.44 mm·100 m-1. With the increase of elevation, the average bulk density at the 0-40 cm depth first decreased and then stabilized at 0.89 g/cm3.(3) With the increase of elevation, the average SOC content at the 0-40 cm depths first increased and then decreased,and the average total N content at the 0-40 cm depth first increased and then stabilized. The correlation between average SOC content and average total N content reached significant level. According to the results of this study, the distribution of plants showed a mono-peak curve with increasing elevation on the northern slopes of the Qilian Mountains. The limiting factor for plant growth at the high elevation areas was not soil physicochemical properties, and therefore,global warming will likely facilitate the development of plant at high elevation areas in the Qilian Mountains.