In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated the...In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated their abilities in retrieving terrestrial water storage(TWS)changes over the Amazon River Basin(ARB)from January 2003 to February 2013.The performance of the weekly GPD-SH and GPDmascon solutions was evaluated by comparing them with the weekly GFZ-SH solutions,Global Land Data Assimilation Systems(GLDAS)-NOAH hydrological model outputs,and monthly GFZ-SH,GPD-SH,and CSRmascon solutions in the spatio-temporal and spectral domains.The results demonstrate that the weekly GPD-SH and GPD-mascon present good consistency with the weekly GFZ-SH solutions and GLDAS-NOAH estimates in the spatio-temporal domains,but GPD-mascon presents stronger signal amplitudes and more spatial details.The comparison of the monthly average of weekly estimates and monthly solutions demonstrates that the weekly GPD-mascon and GFZ-SH with DDK1 filtering are close to the monthly CSRmascon and GFZ-SH solutions,respectively.However,the signal amplitudes of TWS changes from GPD-SH and GFZ-SH with 650 km Gaussian filtering are smaller than the monthly solutions,and the corresponding Root Mean Square Errors between the TWS change time series from the monthly average of weekly solutions and monthly estimates are 18.12 mm(GPD-mascon),18.81 mm(GFZ-SH-DDK1),24.93 mm(GPDSH-G650km),and 33.07 mm(GFZ-SH-G650km),respectively.Additionally,the TWS change time series derived from weekly solutions present more high-frequency time-varying information than monthly solutions.Furthermore,the 300 km Gaussian filtering can improve the signal amplitudes of TWS changes from the weekly GPD-SH solutions more than those with 650 km Gaussian filtering,but the corresponding noise level is higher.The weekly GPD-SH and GPD-mascon solutions can extend the application scopes of GRACE and provide good complements to the current GRACE monthly solutions.展开更多
Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for ...Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for soiI water utiIization in eucalyptus pIanting in the red soiI hiI y region of South China. [Method] In the same cIimatic region, soiI sampIes were coI ected from surface soiI Iayer (A), iI uvial horizon (B) and parent material horizon (C) in the upper sIope, middIe sIope and Iower sIope of eucalyptus pIantation, native forest and pine forest, respectiveIy, to determine the soiI porosity and soiI water content and analyze changes and various infIuencing factors of soiI water content in horizontal and vertical direction. [Result] Average soiI porosity in eucalyptus pIantation, native forest and pine forest was 45.9%, 41.4%and 55.3%, respectiveIy; soiI water content in these three forest stands was 13.3%, 13.4% and 15.5%, respectiveIy. In addition, soiI water content in these three forest stands exhibited no significant differences (P>0.05) among different soiI profiIes and sIope positions, but soiI water content in surface soiI Iayer varied significantIy (P<0.05) among different forest stands; in the horizontal direction, soiI water content exerted an extremeIy significant positive correIation with total coverage. [Conclusion] Total coverage of canopy Iayer, herb and Iitter Iayer is one of the most critical fac-tors affecting the changes of soiI water content in surface soiI Iayer of forest stands.展开更多
[Objective] The aim was to study on construction of overall water environment in Xi'an. [Method] The study discussed necessity and basic principles of over-all restoration and construction of "Chang'an Eight Water...[Objective] The aim was to study on construction of overall water environment in Xi'an. [Method] The study discussed necessity and basic principles of over-all restoration and construction of "Chang'an Eight Water" from urban planning, and explored related methods from long term planning and concrete construction approaches. [Result] The study proposed that urban landscape substrates of "Chang' an Eight Water" should be restored based on overall planning about urban water environment, change of linear metabolism, and construction of drainage circulation system. Furthermore, self-circulation and purification of rainfall and sewage could be made use of there in view of present urban water environment. In addition, urban "metabolism" should be restored progressively to improve urban environment with consideration of water catchment, storage, and diversion. [Conclusion] We should take the initiative to catch the special opportunity to build Xi'an into an international metropolis with overall planning, designing and implementation, which will be conducive to reconstruction of water system and pleasant surroundings, and to presentation of urban ecosystem and context in "Chang'an Eight Water", providing many opportunities for urban development.展开更多
The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river ne...The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.展开更多
Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water r...Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water resources and the retrieval of climatic information. On the basis of earlier researches, this study investigated the growth of the Sayram Lake and the retreat of its water-supplying glaciers in the Tianshan Mountains using long-term sequenced remote sensing images. Our results show that over the past 40 years, the surface area and the water level of the lake has increased by 12.0±0.3 km<sup>2</sup> and 2.8 m, respectively, and the area of its water-supplying glaciers has decreased continuously since the early 1970s with a total reduction of about–2.13±0.03 km<sup>2</sup>. Our study has indicative significance to the research of regional climate change.展开更多
Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents...Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.展开更多
Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water conten...Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.展开更多
Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed sa...Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed saline lakes among the mega dunes.Based on the up to date geological surveys and observations,this study analyzed the groundwater contributions in water-salt balances of the lakes in the desert.We found different types of springs,including the sublacustrine springs that indicate an upward flow of groundwater under the lakebed.A simplified water balance model was developed to analyze the seasonal variations of water level in the Sumu Barun Jaran Lake,which revealed an approximately steady groundwater discharge in the lake and explained why the amplitude of seasonal changes in lake level is less than 0.5 m.In addition,a salt balance model was developed to evaluate the salt accumulations in the groundwater-fed lakes.The relative salt accumulation time is 800–7,000 years in typical saline lakes,which were estimated from the concentration of Cl-,indicating a long history evolution for the lakes in the BJD.Further researches are recommended to provide comprehensive investigations on the interactions between the lakes and groundwater in the BJD.展开更多
Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these stu...Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.展开更多
Tibetan Plateau(TP) lakes are important water resources,which are experiencing quick expansion in recent decades.Previous researches mainly focus on analyzing the relationship between terrestrial water storage(TWS) ch...Tibetan Plateau(TP) lakes are important water resources,which are experiencing quick expansion in recent decades.Previous researches mainly focus on analyzing the relationship between terrestrial water storage(TWS) change and lake water storage(LWS) change in the total inner TP,it is still lack of researches about the spatial difference and the characteristic of sub-region in the inner TP.In this study,we estimated the area change of 34 lakes by using Landsat images in the northeastern TP during 1976–2013,and LWS change by using the Shuttle Radar Topography Mission(SRTM).The results suggested that LWS had shrunk from 1976 to 1994,and then expanded quickly until 2013.LWS had a serious decrease by 13.6 Gt during 1976–1994,and then it increased quickly by 35.4 Gt during 1994–2013.We estimated TWS change,soil moisture change,and permafrost degradation based on the satellite data and related models during 2003–2013.The results indicated that their changing rates were 1.86 Gt/y,0.22 Gt/y,and –0.19 Gt/y,respectively.We also calculated the change of groundwater based on the mass balance with a decreasing trend of –0.054 Gt/y.The results suggested that the cause of TWS change was the increase of LWS.We analyzed the cause of lake change according to water balance,and found that the primary cause of lake expansion was the increasing precipitation(80.7%),followed by glacier meltwater(10.3%) and permafrost degradation(9%).The spatial difference between LWS change and TWS change should be studied further,which is important to understand the driving mechanism of water resources change.展开更多
Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio ...Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.展开更多
Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this...Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.展开更多
Due to the influence of the groundwater level,the internal humidity of the subgrade changes and the stability of the subgrade is affected. The main purpose of this paper is to obtain a reliable model of subgrade soil ...Due to the influence of the groundwater level,the internal humidity of the subgrade changes and the stability of the subgrade is affected. The main purpose of this paper is to obtain a reliable model of subgrade soil water content variation under the action of dry-wet cycle through sensor readings. Thus,an indoor soil column model test system is designed,and the readings of the sensors are used to determine the changing law of moisture field in the subgrade soil. The sensor readings indicate that the water content gradually decreases along the height of the soil column,and the water in the upper part of the soil column continuously loses,while the water in the lower part migrates upward to supplement. With the increase of dry-wet cycle index,the water holding capacity of soil decreases,and the soil surface gradually cracks and tends to rupture.展开更多
This paper focuses on the growth response of Caragana microphylla seedlings to changes of artificially controlled water table in Horqin Sandy Land, China. Monitoring results of soil water content shows that soil moist...This paper focuses on the growth response of Caragana microphylla seedlings to changes of artificially controlled water table in Horqin Sandy Land, China. Monitoring results of soil water content shows that soil moisture is closely correlated to groundwater depths. Soil volumetric water increased rapidly when close to water sources and finally stabilized in a saturated state. The soil moisture trend of CK (control) increased gradually at 0-50 cm of soil depth then decreased to 4% below 50 cm soil depth. C. microphylla can adapt to different soil environments by changes in ecological and physiological characteristics. By comparing the ecological characteristics of C. microphylla seedlings at various water tables, we found that a shallow water table of 40 cm depth inhibited seedling groundwater depth of 120 em was more advantageous for plant growth because of weak ecological characteristics. A height and canopy growth of C. microphylla seedlings. During the first two years, the most suitable water depth for root biomass was 120 cm, and 180 cm for root length. The growth of vertical roots is positively correlated with groundwater depth, and root thickness is the determinate factor for root biomass while the fine root is the determinate factor for root length. A thick root would grow much more in a natural drought environment while access to ground water promotes the growth of fine roots.展开更多
China has experienced a rapid urbanization since late 1970s. The great increase of urban population has resulted in various environmental changes, of which urban water shortage and water environment problems have occu...China has experienced a rapid urbanization since late 1970s. The great increase of urban population has resulted in various environmental changes, of which urban water shortage and water environment problems have occurred in most cities, especially in the rapidly developing urban agglomerations in the eastern coastal region. This research, taking Shandong Peninsula Urban Agglomeration (SPUA) as a case study area analyzes the urbanization expansion in the last decades, discusses the water shortage and water environment changes following the rapid economic development and urbanization sueh as groundwater sinking in the urban and plain area, sea water and saltwater intrusion in the coastal cities, water pollution overspreading and water ecosystem degradation, and puts forwards some strategies for sustainabilitv in populous regions with severe water shortage. Some countermeasures for sustainable development of SPUA are put forward, such as constructing modern water resources inter-city networks to regulate water resouree between cities, adjnsting urbanization policy and urban scale planning to promote the development of small towns and medium sized cities, optimizing urban industry structure by restricting high water consumption enterprises and stimulating the growth of tertiary industry. improving water use efficiency to rednce fresh water consumption and wastewater discharge, introducing economic means to water pricing and water management system, and restoring ecological conditions to strengthen the natural water-making capacity.展开更多
As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North Am...As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.展开更多
Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the au...Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the author obtained the analytical solution of water level change in time domain under the action of an atmospheric pressure history with the Laplace transform method.This solution is composed of two terms:stable and retarded terms.The stable term is the multiplication of barometric efficiency and simultaneous atmospheric pressure,and it implies the value of water level after infinite time when the atmospheric pressure is a constant from the time in question.The retarded term is the transient process due to the time lag of water exchange between well and aquifer.From the solution,it is obtained that the interference of atmospheric pressure on water level is the integral superimposition of the contribution of all atmospheric pressure changes before the time in question.So that,we further found out the response function of pulsive atmospheric pressure history.Calculation shows:① The pulsive response function starts from zero and tends to a steady value,which is proportional to the barometric efficiency,when the time tends to infinity;② The retarded time depends on the mechanical property of aquifer and the radius of well.The larger the seepage coefficient,the smaller the radius of well and the thicker the aquifer,then the shorter the retarded time gets.This solution can be used as the theoretical basis for further analysis of the atmospheric effect and practical correcting method in the future.展开更多
Based on the systematical collection and processing of data on the influence of mining-induced earthquakes on water table regime in deep well Lu-15 in Taozhuang Coal Mine since 1980, we study the characteristics of co...Based on the systematical collection and processing of data on the influence of mining-induced earthquakes on water table regime in deep well Lu-15 in Taozhuang Coal Mine since 1980, we study the characteristics of coseismic effect of water table in deep well in this paper. We have found precursory phenomena of water table in deep well before mining-induced earthquake. Here we discuss the physical mechanism of coseismic effect of mining--induced earthquake on water table in deep well.展开更多
Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie ...Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie Formation(Es3)on the gentle southern slope of the Gubei Sag,Bohai Bay Basin and draw some conclusions that,for complex sand bodies,with the increase in water level the distributary channels bifurcate frequently,from a simple branching shape to a network shape along with the increase in the development of crevasse splays,mouth bars and sheet sands.For single sand bodies,with an increase in water level in the slope zone of the lake basin close to the source area,the superimposition style transitioned from vertical cutting-stacking and lateral isolation to vertical stitching,isolation and lateral stitching.However,in the central zone of the lake basin far from the source area,the superimposition style transitioned from vertical stitching and lateral stitching to vertical isolation and lateral isolation.When water level stays stable,the greater the distance from the source area the greater the disaggregation ratio of a single sand body.At the same distance from the source area,higher water level tends to result in greater disaggregation ratio of a single sand body.展开更多
People are making excessive demands for their drinking water as they pay more and more attentions to the quality of life. Mineral water contains more calcium, magnesium and lots of trace elements than the running wate...People are making excessive demands for their drinking water as they pay more and more attentions to the quality of life. Mineral water contains more calcium, magnesium and lots of trace elements than the running water, and therefore it is good for the digestion, promotion of metabolism, prevention of cardiovascular diseases and osteoporosis, and promotion of Children growth. It has become a favourite drink for many people.展开更多
基金funded by the National Natural Science Foundation of China(Nos.41974015,42374002)the Project Supported by the Special Fund of Hubei Luojia Laboratory(No.220100004)。
文摘In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated their abilities in retrieving terrestrial water storage(TWS)changes over the Amazon River Basin(ARB)from January 2003 to February 2013.The performance of the weekly GPD-SH and GPDmascon solutions was evaluated by comparing them with the weekly GFZ-SH solutions,Global Land Data Assimilation Systems(GLDAS)-NOAH hydrological model outputs,and monthly GFZ-SH,GPD-SH,and CSRmascon solutions in the spatio-temporal and spectral domains.The results demonstrate that the weekly GPD-SH and GPD-mascon present good consistency with the weekly GFZ-SH solutions and GLDAS-NOAH estimates in the spatio-temporal domains,but GPD-mascon presents stronger signal amplitudes and more spatial details.The comparison of the monthly average of weekly estimates and monthly solutions demonstrates that the weekly GPD-mascon and GFZ-SH with DDK1 filtering are close to the monthly CSRmascon and GFZ-SH solutions,respectively.However,the signal amplitudes of TWS changes from GPD-SH and GFZ-SH with 650 km Gaussian filtering are smaller than the monthly solutions,and the corresponding Root Mean Square Errors between the TWS change time series from the monthly average of weekly solutions and monthly estimates are 18.12 mm(GPD-mascon),18.81 mm(GFZ-SH-DDK1),24.93 mm(GPDSH-G650km),and 33.07 mm(GFZ-SH-G650km),respectively.Additionally,the TWS change time series derived from weekly solutions present more high-frequency time-varying information than monthly solutions.Furthermore,the 300 km Gaussian filtering can improve the signal amplitudes of TWS changes from the weekly GPD-SH solutions more than those with 650 km Gaussian filtering,but the corresponding noise level is higher.The weekly GPD-SH and GPD-mascon solutions can extend the application scopes of GRACE and provide good complements to the current GRACE monthly solutions.
基金Supported by National Natural Science Foundation of China(U1033004)Open Fund of Key Laboratory of Plant Nutrition and Fertilizer,Ministry of Agriculture(2012-03)+3 种基金Major Science and Technology Project of Guangxi Zhuang Autonomous Region(GKZ1347001)Natural Science Foundation of Guangxi Zhuang Autonomous Region(2012GXNSFAA053066)Special Fund for the Basic Research and Operating Expenses of Guangxi Academy of Agricultural Sciences(GNK2013YM11,GNK2015YM11)Open Project of Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation(13B0201)~~
文摘Objective] This study almed to investigate the characteristics of soiI total porosity (STP) and various factors affecting soiI water content (SWC) in eucalyptus pIantation (EP), thereby providing references for soiI water utiIization in eucalyptus pIanting in the red soiI hiI y region of South China. [Method] In the same cIimatic region, soiI sampIes were coI ected from surface soiI Iayer (A), iI uvial horizon (B) and parent material horizon (C) in the upper sIope, middIe sIope and Iower sIope of eucalyptus pIantation, native forest and pine forest, respectiveIy, to determine the soiI porosity and soiI water content and analyze changes and various infIuencing factors of soiI water content in horizontal and vertical direction. [Result] Average soiI porosity in eucalyptus pIantation, native forest and pine forest was 45.9%, 41.4%and 55.3%, respectiveIy; soiI water content in these three forest stands was 13.3%, 13.4% and 15.5%, respectiveIy. In addition, soiI water content in these three forest stands exhibited no significant differences (P&gt;0.05) among different soiI profiIes and sIope positions, but soiI water content in surface soiI Iayer varied significantIy (P&lt;0.05) among different forest stands; in the horizontal direction, soiI water content exerted an extremeIy significant positive correIation with total coverage. [Conclusion] Total coverage of canopy Iayer, herb and Iitter Iayer is one of the most critical fac-tors affecting the changes of soiI water content in surface soiI Iayer of forest stands.
文摘[Objective] The aim was to study on construction of overall water environment in Xi'an. [Method] The study discussed necessity and basic principles of over-all restoration and construction of "Chang'an Eight Water" from urban planning, and explored related methods from long term planning and concrete construction approaches. [Result] The study proposed that urban landscape substrates of "Chang' an Eight Water" should be restored based on overall planning about urban water environment, change of linear metabolism, and construction of drainage circulation system. Furthermore, self-circulation and purification of rainfall and sewage could be made use of there in view of present urban water environment. In addition, urban "metabolism" should be restored progressively to improve urban environment with consideration of water catchment, storage, and diversion. [Conclusion] We should take the initiative to catch the special opportunity to build Xi'an into an international metropolis with overall planning, designing and implementation, which will be conducive to reconstruction of water system and pleasant surroundings, and to presentation of urban ecosystem and context in "Chang'an Eight Water", providing many opportunities for urban development.
基金Under the auspices of Special Fund for Scientific Research in the Public Interestgranted by Ministry of Water Resources(No.2012010072,200701024)+3 种基金Key Program of National Natural Science Foundation of China(No.40730635)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2011491111)Research Foundation of Nanjing University of Information Science and Technology(No.20100406)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.
基金financially supported by the National Basic Research Program of China(2015CB954101)the National Science and Technology Basic Special Project(2011FY11040-2)+1 种基金the National Natural Science Foundation of China(41171332,41571388)the Surveying and Mapping Geoinformation Nonprofit Specific Project(201512033)
文摘Inland lakes and alpine glaciers are important constituents of water resources in arid and semiarid regions. Understanding their variations is critical for both an accurate evaluation of the dynamic changes of water resources and the retrieval of climatic information. On the basis of earlier researches, this study investigated the growth of the Sayram Lake and the retreat of its water-supplying glaciers in the Tianshan Mountains using long-term sequenced remote sensing images. Our results show that over the past 40 years, the surface area and the water level of the lake has increased by 12.0±0.3 km<sup>2</sup> and 2.8 m, respectively, and the area of its water-supplying glaciers has decreased continuously since the early 1970s with a total reduction of about–2.13±0.03 km<sup>2</sup>. Our study has indicative significance to the research of regional climate change.
基金funded by the Global Change Research Program of China (2010CB951401)the National Natural Science Foundation of China (41030638, 41121001, 41030527,41130641,and 41201025)the One Hundred Talents Program of the Chinese Academy of Sciences
文摘Water storage has important significance for understanding water cycles of global and local domains and for monitoring climate and environmental changes. As a key variable in hydrology, water storage change represents the sum of precipitation, evaporation, surface runoff, soil water and groundwater exchanges. Water storage change data during the period of 2003-2008 for the source region of the Yellow River were collected from Gravity Recovery and Climate Experiment (GRACE) satellite data. The monthly actual evaporation was estimated according to the water balance equation. The simulated actual evaporation was significantly consistent and correlative with not only the observed pan (20 cm) data, but also the simulated results of the version 2 of Simple Biosphere model. The average annual evaporation of the Tangnaihai Basin was 506.4 mm, where evaporation in spring, summer, autumn and winter was 130.9 mm, 275.2 mm, 74.3 mm and 26.1 mm, and accounted for 25.8%, 54.3%, 14.7% and 5.2% of the average annual evaporation, respectively, The precipitation increased slightly and the actual evaporation showed an obvious decrease. The water storage change of the source region of the Yellow River displayed an increase of 0.51 mm per month from 2003 to 2008, which indicated that the storage capacity has significantly increased, probably caused by the degradation of permafrost and the increase of the thickness of active layers. The decline of actual evaporation and the increase of water storage capacity resulted in the increase of river runoff.
基金supported by the CAS Knowledge Innovation Key Project (Grant No. KZCX2-YW-330)the National Science Fund FosteringTalents in Basic Research to Glaciology and Geocryology (Grant No. J0630966).
文摘Hydrate formation and dissociation processes are always accompanied by water migration in porous media, which is similar to the ice. In our study, a novel pF-meter sensor which could detect the changes of water content inside sand was first applied to hydrate formation and dissociation processes. It also can study the water change characteristics in the core scale of a partially saturated silica sand sample and compare the differences of water changes between the processes of formation and dissociation of methane hydrate and freezing and thawing of ice. The experimental results showed that the water changes in the processes of formation and dissociation of methane hydrate were basically similar to that of the freezing and thawing of ice in sand. When methane hydrate or ice was formed, water changes showed the decrease in water content on the whole and the pF values rose following the formation processes. However, there were very obvious differences between the ice thawing and hydrate dissociation.
基金supported by the China Foundation for the Author of National Excellent Doctoral Dissertation (201457)the National Natural Science Foundation of China (91125024)
文摘Groundwater-fed lakes are essential for the ecology in arid and semiarid regions.As a typical arid region,the Badain Jaran Desert (BJD) is famous in the world for the presence of a large number of groundwater-fed saline lakes among the mega dunes.Based on the up to date geological surveys and observations,this study analyzed the groundwater contributions in water-salt balances of the lakes in the desert.We found different types of springs,including the sublacustrine springs that indicate an upward flow of groundwater under the lakebed.A simplified water balance model was developed to analyze the seasonal variations of water level in the Sumu Barun Jaran Lake,which revealed an approximately steady groundwater discharge in the lake and explained why the amplitude of seasonal changes in lake level is less than 0.5 m.In addition,a salt balance model was developed to evaluate the salt accumulations in the groundwater-fed lakes.The relative salt accumulation time is 800–7,000 years in typical saline lakes,which were estimated from the concentration of Cl-,indicating a long history evolution for the lakes in the BJD.Further researches are recommended to provide comprehensive investigations on the interactions between the lakes and groundwater in the BJD.
基金funded by the Funds for Creative Research Groups of China (41121001)the National Basic Research Program (2013CBA01801)+3 种基金the National Natural Science Foundation of China (41301069, 41471058)the State Key Laboratory of Cryospheric Science foundation, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (SKLCS-ZZ-2012-01-01)West Light Program for Talent Cultivation of the Chinese Academy of Sciencesthe Special Financial Grant from the China Postdoctoral Science Foundation ( 2014T70948)
文摘Changes in glaciers in the Chinese Tianshan Mountains have been analyzed previously. However, most previous studies focused on individual glaciers and/or decentralized glacial basins. Moreover, a majority of these studies were published only in Chinese, which limited their usefulness at the international level. With this in mind, the authors reviewed the previous studies to create an overview of glacial changes in the Chinese Tianshan Mountains over the last five decades and discussed the effects of glacial changes on water resources. In response to climate change, glaciers in the Tianshan Mountains are shrinking rapidly and are ca. 20% smaller on average in the past five decades. Overall, the area reduction of glacial basins in the central part of the Chinese Tianshan Mountains is larger than that in the eastern and western parts. The spatial differentiation in glacial changes are caused by both differences in regional climate and in glacial factors. The effects of glacial changes on water resources vary in different river basins due to the differences in glacier distribution, characteristics of glacial change and proportion of the glacier meltwater in river runoff.
基金funded by the Strategic Priority Research Program of Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road (Pan-TPE) (XDA20040501)the second Tibetan Plateau Scientific Expedition and Research Program (STEP) (2019QZKK0605)the National Natural Science Foundation of China (41501073)。
文摘Tibetan Plateau(TP) lakes are important water resources,which are experiencing quick expansion in recent decades.Previous researches mainly focus on analyzing the relationship between terrestrial water storage(TWS) change and lake water storage(LWS) change in the total inner TP,it is still lack of researches about the spatial difference and the characteristic of sub-region in the inner TP.In this study,we estimated the area change of 34 lakes by using Landsat images in the northeastern TP during 1976–2013,and LWS change by using the Shuttle Radar Topography Mission(SRTM).The results suggested that LWS had shrunk from 1976 to 1994,and then expanded quickly until 2013.LWS had a serious decrease by 13.6 Gt during 1976–1994,and then it increased quickly by 35.4 Gt during 1994–2013.We estimated TWS change,soil moisture change,and permafrost degradation based on the satellite data and related models during 2003–2013.The results indicated that their changing rates were 1.86 Gt/y,0.22 Gt/y,and –0.19 Gt/y,respectively.We also calculated the change of groundwater based on the mass balance with a decreasing trend of –0.054 Gt/y.The results suggested that the cause of TWS change was the increase of LWS.We analyzed the cause of lake change according to water balance,and found that the primary cause of lake expansion was the increasing precipitation(80.7%),followed by glacier meltwater(10.3%) and permafrost degradation(9%).The spatial difference between LWS change and TWS change should be studied further,which is important to understand the driving mechanism of water resources change.
基金supported by the Natural Science Foundation of China (No.41401044 and No.41310013)the key research projects of frontier sciences CAS (QYZDJ-SSW-DQC006)+1 种基金the Chinese Academy of Science (‘West Star’ project)the CAS/SAFEA international partnership program for creative research teams (KZZD-EW-TZ-06)
文摘Abies fabri is a typical subalpine dark coniferous forest in southwestern China. Air temperature increases more at high elevation areas than that at low elevation areas in mountainous regions,and climate change ratio is also uneven in different seasons. Carbon gain and the response of water use efficiency(WUE) to annual and seasonal increases in temperature with or without CO_2 fertilization were simulated in Abies fabri using the atmospheric-vegetation interaction model(AVIM2). Four future climate scenarios(RCP2.6,RCP4.5,RCP6.0 and RCP8.5) from the Coupled Model Intercomparison Project Phase 5(CMIP5) were selectively investigated. The results showed that warmer temperatures have negative effects on gross primary production(GPP) and net primary production(NPP) in growing seasons and positive effects in dormant seasons due to the variation in the leaf area index. Warmer temperatures tend to generate lower canopy WUE and higher ecosystem WUE in Abies fabri. However,warmer temperature together with rising CO_2 concentrations significantlyincrease the GPP and NPP in both growing and dormant seasons and enhance WUE in annual and dormant seasons because of the higher leaf area index(LAI) and soil temperature. The comparison of the simulated results with and without CO_2 fertilization shows that CO_2 has the potential to partially alleviate the adverse effects of climate warming on carbon gain and WUE in subalpine coniferous forests.
基金Under the auspices of National Key Research and Development Program(No.2016YFC0500203)National Natural Science Foundation of China(No.41571427)
文摘Water vapor in the earth′s upper atmosphere plays a crucial role in the radiative balance, hydrological process, and climate change. Based on the latest moderate-resolution imaging spectroradiometer(MODIS) data, this study probes the spatio-temporal variations of global water vapor content in the past decade. It is found that overall the global water vapor content declined from 2003 to 2012(slope b = –0.0149, R = 0.893, P = 0.0005). The decreasing trend over the ocean surface(b = –0.0170, R = 0.908, P = 0.0003) is more explicit than that over terrestrial surface(b = –0.0100, R = 0.782, P = 0.0070), more significant over the Northern Hemisphere(b = –0.0175, R = 0.923, P = 0.0001) than that over the Southern Hemisphere(b = –0.0123, R = 0.826, P = 0.0030). In addition, the analytical results indicate that water vapor content are decreasing obviously between latitude of 36°N and 36°S(b = 0.0224, R = 0.892, P = 0.0005), especially between latitude of 0°N and 36°N(b = 0.0263, R = 0.931, P = 0.0001), while the water vapor concentrations are increasing slightly in the Arctic regions(b = 0.0028, R = 0.612, P = 0.0590). The decreasing and spatial variation of water vapor content regulates the effects of carbon dioxide which is the main reason of the trend in global surface temperatures becoming nearly flat since the late 1990 s. The spatio-temporal variations of water vapor content also affect the growth and spatial distribution of global vegetation which also regulates the global surface temperature change, and the climate change is mainly caused by the earth's orbit position in the solar and galaxy system. A big data model based on gravitational-magmatic change with the solar or the galactic system is proposed to be built for analyzing how the earth's orbit position in the solar and galaxy system affects spatio-temporal variations of global water vapor content, vegetation and temperature at large spatio-temporal scale. This comprehensive examination of water vapor changes promises a holistic understanding of the global climate change and potential underlying mechanisms.
文摘Due to the influence of the groundwater level,the internal humidity of the subgrade changes and the stability of the subgrade is affected. The main purpose of this paper is to obtain a reliable model of subgrade soil water content variation under the action of dry-wet cycle through sensor readings. Thus,an indoor soil column model test system is designed,and the readings of the sensors are used to determine the changing law of moisture field in the subgrade soil. The sensor readings indicate that the water content gradually decreases along the height of the soil column,and the water in the upper part of the soil column continuously loses,while the water in the lower part migrates upward to supplement. With the increase of dry-wet cycle index,the water holding capacity of soil decreases,and the soil surface gradually cracks and tends to rupture.
基金funded by the Chinese National Key Projects for Basic Scientific Research (No.2009CB421303)the Chinese National Support Projects of Science and Technology (No.2011BAC07B02)+1 种基金the Strategic Leading Science and Technology Project of Chinese Academy of Sciences (No.XDA05050201-04-01)the Chinese National Science Foundation (No.41371053)
文摘This paper focuses on the growth response of Caragana microphylla seedlings to changes of artificially controlled water table in Horqin Sandy Land, China. Monitoring results of soil water content shows that soil moisture is closely correlated to groundwater depths. Soil volumetric water increased rapidly when close to water sources and finally stabilized in a saturated state. The soil moisture trend of CK (control) increased gradually at 0-50 cm of soil depth then decreased to 4% below 50 cm soil depth. C. microphylla can adapt to different soil environments by changes in ecological and physiological characteristics. By comparing the ecological characteristics of C. microphylla seedlings at various water tables, we found that a shallow water table of 40 cm depth inhibited seedling groundwater depth of 120 em was more advantageous for plant growth because of weak ecological characteristics. A height and canopy growth of C. microphylla seedlings. During the first two years, the most suitable water depth for root biomass was 120 cm, and 180 cm for root length. The growth of vertical roots is positively correlated with groundwater depth, and root thickness is the determinate factor for root biomass while the fine root is the determinate factor for root length. A thick root would grow much more in a natural drought environment while access to ground water promotes the growth of fine roots.
基金the National Social Science Fund of China(Grant No.06BJL036)Natural Science Foundation of Shandong Province (Grant No.Y2006E05).
文摘China has experienced a rapid urbanization since late 1970s. The great increase of urban population has resulted in various environmental changes, of which urban water shortage and water environment problems have occurred in most cities, especially in the rapidly developing urban agglomerations in the eastern coastal region. This research, taking Shandong Peninsula Urban Agglomeration (SPUA) as a case study area analyzes the urbanization expansion in the last decades, discusses the water shortage and water environment changes following the rapid economic development and urbanization sueh as groundwater sinking in the urban and plain area, sea water and saltwater intrusion in the coastal cities, water pollution overspreading and water ecosystem degradation, and puts forwards some strategies for sustainabilitv in populous regions with severe water shortage. Some countermeasures for sustainable development of SPUA are put forward, such as constructing modern water resources inter-city networks to regulate water resouree between cities, adjnsting urbanization policy and urban scale planning to promote the development of small towns and medium sized cities, optimizing urban industry structure by restricting high water consumption enterprises and stimulating the growth of tertiary industry. improving water use efficiency to rednce fresh water consumption and wastewater discharge, introducing economic means to water pricing and water management system, and restoring ecological conditions to strengthen the natural water-making capacity.
基金supported by National Natural Science Foundation of China(Grant Nos.41431070,41174016,41274026,41274024,41321063)National Key Basic Research Program of China(973 Program,2012CB957703)+1 种基金CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-05)The Chinese Academy of Sciences
文摘As global warming continues,the monitoring of changes in terrestrial water storage becomes increasingly important since it plays a critical role in understanding global change and water resource management.In North America as elsewhere in the world,changes in water resources strongly impact agriculture and animal husbandry.From a combination of Gravity Recovery and Climate Experiment(GRACE) gravity and Global Positioning System(GPS) data,it is recently found that water storage from August,2002 to March,2011 recovered after the extreme Canadian Prairies drought between 1999 and 2005.In this paper,we use GRACE monthly gravity data of Release 5 to track the water storage change from August,2002 to June,2014.In Canadian Prairies and the Great Lakes areas,the total water storage is found to have increased during the last decade by a rate of 73.8 ± 14.5 Gt/a,which is larger than that found in the previous study due to the longer time span of GRACE observations used and the reduction of the leakage error.We also find a long term decrease of water storage at a rate of-12.0 ± 4.2 Gt/a in Ungava Peninsula,possibly due to permafrost degradation and less snow accumulation during the winter in the region.In addition,the effect of total mass gain in the surveyed area,on present-day sea level,amounts to-0.18 mm/a,and thus should be taken into account in studies of global sea level change.
文摘Based on the partial differential equation governing the effect of atmospheric pressure on water level of confined well,deriving the boundary condition and considering the seepage water between well and aquifer,the author obtained the analytical solution of water level change in time domain under the action of an atmospheric pressure history with the Laplace transform method.This solution is composed of two terms:stable and retarded terms.The stable term is the multiplication of barometric efficiency and simultaneous atmospheric pressure,and it implies the value of water level after infinite time when the atmospheric pressure is a constant from the time in question.The retarded term is the transient process due to the time lag of water exchange between well and aquifer.From the solution,it is obtained that the interference of atmospheric pressure on water level is the integral superimposition of the contribution of all atmospheric pressure changes before the time in question.So that,we further found out the response function of pulsive atmospheric pressure history.Calculation shows:① The pulsive response function starts from zero and tends to a steady value,which is proportional to the barometric efficiency,when the time tends to infinity;② The retarded time depends on the mechanical property of aquifer and the radius of well.The larger the seepage coefficient,the smaller the radius of well and the thicker the aquifer,then the shorter the retarded time gets.This solution can be used as the theoretical basis for further analysis of the atmospheric effect and practical correcting method in the future.
文摘Based on the systematical collection and processing of data on the influence of mining-induced earthquakes on water table regime in deep well Lu-15 in Taozhuang Coal Mine since 1980, we study the characteristics of coseismic effect of water table in deep well in this paper. We have found precursory phenomena of water table in deep well before mining-induced earthquake. Here we discuss the physical mechanism of coseismic effect of mining--induced earthquake on water table in deep well.
基金supported by Research Foundation of China University of Petroleum-Beijing at Karamay(No.XQZX20210004)。
文摘Changes in water level are one of the important factors controlling the constructive characteristics of deltas.The paper studies the influence of water level changes on sand bodies in the third member of the Shahejie Formation(Es3)on the gentle southern slope of the Gubei Sag,Bohai Bay Basin and draw some conclusions that,for complex sand bodies,with the increase in water level the distributary channels bifurcate frequently,from a simple branching shape to a network shape along with the increase in the development of crevasse splays,mouth bars and sheet sands.For single sand bodies,with an increase in water level in the slope zone of the lake basin close to the source area,the superimposition style transitioned from vertical cutting-stacking and lateral isolation to vertical stitching,isolation and lateral stitching.However,in the central zone of the lake basin far from the source area,the superimposition style transitioned from vertical stitching and lateral stitching to vertical isolation and lateral isolation.When water level stays stable,the greater the distance from the source area the greater the disaggregation ratio of a single sand body.At the same distance from the source area,higher water level tends to result in greater disaggregation ratio of a single sand body.
文摘People are making excessive demands for their drinking water as they pay more and more attentions to the quality of life. Mineral water contains more calcium, magnesium and lots of trace elements than the running water, and therefore it is good for the digestion, promotion of metabolism, prevention of cardiovascular diseases and osteoporosis, and promotion of Children growth. It has become a favourite drink for many people.