By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of t...Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of the AlN/GaN HFETs were simulated using the quasi-two-dimensional(quasi-2D) model. By analyzing the variation in the electron mobility for the two-dimensional electron gas(2DEG) with the channel electric field, it is found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field(PCF) scattering. The 2DEG electron mobility difference is mostly caused by the PCF scattering which can reach up to 899.6 cm^2/(V·s)(sample a), 1307.4 cm^2/(V·s)(sample b),1561.7 cm^2/(V s)(sample c) and 678.1 cm^2/(V·s)(sample d), respectively. When the 2DEG sheet density is modulated by the drain–source bias, the electron mobility for samples a, b and c appear to peak with the variation of the 2DEG sheet density, but for sample d, no peak appears and the electron mobility rises with the increase in the2 DEG sheet density.展开更多
The electric field in the crystal planar channels is studied by the Thomas-Fermi method. The Thomas-Fermi equation and the corresponding boundary conditions are derived for the crystal planar channels. The numerical s...The electric field in the crystal planar channels is studied by the Thomas-Fermi method. The Thomas-Fermi equation and the corresponding boundary conditions are derived for the crystal planar channels. The numerical solution for the electric field in the channels between (110) planes of the single crystal silicon and the critical angles of channelling protons in them arc shown. Reasonable agreements with the experimental data are obtained. The results show that the Thomas-Fermi method for the crystal works well in this study, and a microscopic research of the channel electric field with the contribution of all atoms and the atomic ionization being taken into account is practical.展开更多
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
基金supported by the National Natural Science Foundation of China(No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20110131110005)
文摘Based on the measured capacitance–voltage(C–V) curves and current–voltage(I–V) curves for the prepared differently-sized AlN/GaN heterostructure field-effect transistors(HFETs), the I–V characteristics of the AlN/GaN HFETs were simulated using the quasi-two-dimensional(quasi-2D) model. By analyzing the variation in the electron mobility for the two-dimensional electron gas(2DEG) with the channel electric field, it is found that the different polarization charge distribution generated by the different channel electric field distribution can result in different polarization Coulomb field(PCF) scattering. The 2DEG electron mobility difference is mostly caused by the PCF scattering which can reach up to 899.6 cm^2/(V·s)(sample a), 1307.4 cm^2/(V·s)(sample b),1561.7 cm^2/(V s)(sample c) and 678.1 cm^2/(V·s)(sample d), respectively. When the 2DEG sheet density is modulated by the drain–source bias, the electron mobility for samples a, b and c appear to peak with the variation of the 2DEG sheet density, but for sample d, no peak appears and the electron mobility rises with the increase in the2 DEG sheet density.
基金国家自然科学基金,the Chinese High Performance Computing Center (Beijing)
文摘The electric field in the crystal planar channels is studied by the Thomas-Fermi method. The Thomas-Fermi equation and the corresponding boundary conditions are derived for the crystal planar channels. The numerical solution for the electric field in the channels between (110) planes of the single crystal silicon and the critical angles of channelling protons in them arc shown. Reasonable agreements with the experimental data are obtained. The results show that the Thomas-Fermi method for the crystal works well in this study, and a microscopic research of the channel electric field with the contribution of all atoms and the atomic ionization being taken into account is practical.