期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Competition Between Two Excitation-dissociation Channels for Molecular Ions
1
作者 来丽坤 张立敏 +1 位作者 杨茂萍 周丹娜 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2009年第3期223-227,339,共6页
When the molecular ions XYZ+ (XY2+) are excited simultaneously from an electronic state E0 into two higher electronic states Ea and EZ with supervened dissociation or predisso- ciation, competition between the α ... When the molecular ions XYZ+ (XY2+) are excited simultaneously from an electronic state E0 into two higher electronic states Ea and EZ with supervened dissociation or predisso- ciation, competition between the α and β excitation-dissociation channels occurs. A the- oretical model is provided to deal with the competition of the two excitation-dissociation channels with more than two kinds of ionic products for XYZ+ (XY2+). Supposing that the photo-excitation rates of two states Eα and Eβ are much less than their dissociation or pre-dissociation rates, a theoretical equation can be deduced to fit the measured data, which reflects the dependence of the product branching ratios on the intensity ratios of two excitation lasers. From the fitted parameters the excitation cross section ratios are obtained. In experiment, we studied the competition between two excitation-dissociation channels of CO^2+. By measuring the dependence of the product branching ratio on the intensity ratio of two dissociation lasers and fitting the experiment data with the theoretical equation, excitation cross section ratios were deduced. 展开更多
关键词 Molecular ion Competition of two excitation channel PHOTODISSOCIATION excitation cross section ratio
下载PDF
SK channels modulate the excitability and firing precision of projection neurons in the robust nucleus of the arcopallium in adult male zebra finches 被引量:1
2
作者 Guo-Qiang Hou Xuan Pan +2 位作者 Cong-Shu Liao Song-Hua Wang Dong-Feng Li 《Neuroscience Bulletin》 SCIE CAS CSCD 2012年第3期271-281,共11页
Objective Motor control is encoded by neuronal activity. Small conductance Ca2+-activated K+ channels (SK channels) maintain the regularity and precision of firing by contributing to the afterhyperpolarization (... Objective Motor control is encoded by neuronal activity. Small conductance Ca2+-activated K+ channels (SK channels) maintain the regularity and precision of firing by contributing to the afterhyperpolarization (AHP) of the action potential in mammals. However, it is not clear how SK channels regulate the output of the vocal motor system in songbirds. The premotor robust nucleus of the arcopallium (RA) in the zebra finch is responsible for the output of song information. The temporal pattern of spike bursts in RA projection neurons is associated with the timing of the acoustic features of birdsong. Methods The firing properties of RA projection neurons were analyzed using patch clamp whole-cell and cell-attached recording techniques. Results SK channel blockade by apamin decreased the AHP amplitude and increased the evoked firing rate in RA projection neurons. It also caused reductions in the regularity and precision of firing. RA projection neurons displayed regular spontaneous action potentials, while apamin caused irregular spontaneous firing but had no effect on the firing rate. In the absence of synaptic inputs, RA projection neurons still had spontaneous firing, and apamin had an evident effect on the firing rate, but caused no significant change in the firing regularity, compared with apamin application in the presence of synaptic inputs. Conclusion SK channels contribute to the maintenance of firing regularity in RA projection neurons which requires synaptic activity, and consequently ensures the precision of song encoding. 展开更多
关键词 SK channels excitability firing precision robust nucleus of the arcopallium zebra finches
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部