With the help of in-situ formed CH_3COO- anion, a pair of 3D homochiral coordination polymers with open channels were constructed by the assembly of lactic acid derivative ligands, 1.4-DIB ligands and Cd(II) ions, n...With the help of in-situ formed CH_3COO- anion, a pair of 3D homochiral coordination polymers with open channels were constructed by the assembly of lactic acid derivative ligands, 1.4-DIB ligands and Cd(II) ions, namely [Cd3((R)-CIA)2(CH3CO2)_2(1.4-DIB)2(H2O)2]·x(Guest)(1-D) and [Cd3((S)-CIA)2(CH3CO2)2(1.4-DIB)2(H2O)2]·x(Guest)(1-L). They contain 1D interesting ladder-like Cd-(R)-CIA(3-) chains and exhibit SHG-active behavior and photoluminescent property.展开更多
Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct en...Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct end-to-end suture repair,is possible.The problem arises when there is significant segmental loss,which can occur following trauma as well as oncological procedures.展开更多
A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were...A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains(~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.展开更多
A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potenti...A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor(Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed(as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential(e QFP)decreases as the channel potential starts to decrease, and there are hiphops in the channel e QFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I–V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.展开更多
基金supported by the Natural Science Foundation of Guizhou Province(20122344)125 program of Guizhou Education Department(2012015)the Doctoral Scientific Fund of Zunyi Normal College(2012BSJJ12)
文摘With the help of in-situ formed CH_3COO- anion, a pair of 3D homochiral coordination polymers with open channels were constructed by the assembly of lactic acid derivative ligands, 1.4-DIB ligands and Cd(II) ions, namely [Cd3((R)-CIA)2(CH3CO2)_2(1.4-DIB)2(H2O)2]·x(Guest)(1-D) and [Cd3((S)-CIA)2(CH3CO2)2(1.4-DIB)2(H2O)2]·x(Guest)(1-L). They contain 1D interesting ladder-like Cd-(R)-CIA(3-) chains and exhibit SHG-active behavior and photoluminescent property.
文摘Nerve guidance channels are limited by lack of topographical guidance:Treatment of sizeable nerve gaps remains problematic following peripheral nerve injury.Functional outcomes are good when neurorrhaphy,or direct end-to-end suture repair,is possible.The problem arises when there is significant segmental loss,which can occur following trauma as well as oncological procedures.
基金financially supported by the National Natural Science Foundation of China (Nos. 81330031 and 81271701)
文摘A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains(~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.
文摘A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor(Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed(as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential(e QFP)decreases as the channel potential starts to decrease, and there are hiphops in the channel e QFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I–V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.