This paper presents a further study of the Manning and Darcy-Weisbach resistance coefficients, as they play a significant role in assessing the cross-sectional mean velocity, conveyance capacity and determining the la...This paper presents a further study of the Manning and Darcy-Weisbach resistance coefficients, as they play a significant role in assessing the cross-sectional mean velocity, conveyance capacity and determining the lateral distribution of depth mean velocity and local boundary shear stress in compound channels. The relationships between the local, zonal and overall resistance coefficients, and a wide range of geometries and different roughness between the main channel and the flood plain are established by analyzing a vast amount of experimental data from a British Science and Engineering Research Council Flood Channel Facility (SERC-FCF). And the experimental results also show that the overall Darcy-Weisbach resistance coefficient for a compound channel is the function of Reynolds number, but the function relationship is different from that for a single channel. By comparing and analyzing the conventional methods with the experimental data to predict composite roughness in compound channels, it is found that these methods are not suitable for compound channels. Moreover, the reason why the conventional methods cannot assess correctly the conveyance capacity of compound channels is also analyzed in this paper.展开更多
A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this for...A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this formula,the impacts of distributed gate resistance and intrinsic channel resistance on noise performance are discussed.Two kinds of noise optimization approaches are performed and applied to the design of a 5 2GHz CMOS LNA.展开更多
Background:Continuous and porous low hydraulic resistance channels(LHRCs)are important structures of meridians in traditional Chinese medicine(TCM).In this study,based on the previous research on LHRCs along meridian ...Background:Continuous and porous low hydraulic resistance channels(LHRCs)are important structures of meridians in traditional Chinese medicine(TCM).In this study,based on the previous research on LHRCs along meridian paths(LHRCMs)in mini-pig,we aimed to detect the low hydraulic resistance point(LHRP)and display the LHRCMs in rats.Methods:A technique for measuring interstitial hydraulic resistance(Rh)in rats was established to detect and measure the Rh along the conception vessel(CV)in TCM,and Alcian Blue(AB)solution was injected into the LHRP along the CV.The interstitial fluid pressure(IFP)of the LHRP was measured before and after AB injection.Then,the distribution characteristics of the AB solution were investigated to explore the relationship between AB tracks and meridian paths in TCM.Results:The positions of the LHRPs coincided with the low impedance points(LIPs)of the rat skin along the CV.The Rh value along the CV(10.37,1.26,×10^(6)dyne s cm^(-5))was significantly lower than that in the non-meridian area(19.13±1.37,×10^(6)dyne s cm^(-5),P<0.01).After AB injection,the IFP of the LHRP was 2.52 mmHg,which was higher than that before AB injection.The AB tracks(ABT)along the CV,spleen meridian,and kidney meridian appeared in one or two directions,with single or multiple paths and uneven thickness and length.The appearance rate was 73.33%.Conclusions:LHRCMs existed not only in minipigs but also in rats.The LHRCMs could be observed after AB injection into the LHRP in the subcutaneous connective tissues of rats.展开更多
A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were...A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains(~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.展开更多
This study focuses on modeling the effects of deep hole traps, mainly the effect of the substrate(backgating effect) in a GaAs transistor MESFT. This effect is explained by the existence, at the interface, of a spac...This study focuses on modeling the effects of deep hole traps, mainly the effect of the substrate(backgating effect) in a GaAs transistor MESFT. This effect is explained by the existence, at the interface, of a space charge zone. Any modulation in this area leads to response levels trapping the holes therein to the operating temperature. We subsequently developed a model treating the channel substrate interface as an N–P junction, allowing us to deduce the time dependence of the component parameters of the total resistance R ds, the pinch-off voltage V P, channel resistance, fully open R co and the parasitic series resistance R S to bind the effect trap holes H1and H0. When compared with the experimental results, the values of the R DS(t S/ model for both traps show that there is an agreement between theory and experiment; it has inferred parameter traps, namely the density and the time constant of the trap. This means that a space charge region exists at the channel–substrate interface and that the properties can be approximated to an N–P junction.展开更多
A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potenti...A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor(Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed(as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential(e QFP)decreases as the channel potential starts to decrease, and there are hiphops in the channel e QFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I–V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.展开更多
We have investigated the properties of C60-based organic field effect transistors(OFETs) with a tris(8- hydroxyquinoline) aluminum(Alq3) buffer layer inserted between the source/drain electrodes and the active m...We have investigated the properties of C60-based organic field effect transistors(OFETs) with a tris(8- hydroxyquinoline) aluminum(Alq3) buffer layer inserted between the source/drain electrodes and the active material. The electrical characteristics of OFETs are improved with the insertion of Alq3 film.The peak field effect mobility is increased to 1.28×10^(-2) cm^2/(V·s) and the threshold voltage is decreased to 10 V when the thickness of the Alq3 is 10 nm.The reason for the improved performance of the devices is probably due to the prevention of metal atoms diffusing into the C60 active layer and the reduction of the channel resistance in Alq3 films.展开更多
基金The project supported by the National Natural Science Foundation of China(50279024)the National Key Basic Research and Development Program of China(973 Program)(2003CB415202)the Specialized Research Fund for the Doctoral Program of Higher Education(2
文摘This paper presents a further study of the Manning and Darcy-Weisbach resistance coefficients, as they play a significant role in assessing the cross-sectional mean velocity, conveyance capacity and determining the lateral distribution of depth mean velocity and local boundary shear stress in compound channels. The relationships between the local, zonal and overall resistance coefficients, and a wide range of geometries and different roughness between the main channel and the flood plain are established by analyzing a vast amount of experimental data from a British Science and Engineering Research Council Flood Channel Facility (SERC-FCF). And the experimental results also show that the overall Darcy-Weisbach resistance coefficient for a compound channel is the function of Reynolds number, but the function relationship is different from that for a single channel. By comparing and analyzing the conventional methods with the experimental data to predict composite roughness in compound channels, it is found that these methods are not suitable for compound channels. Moreover, the reason why the conventional methods cannot assess correctly the conveyance capacity of compound channels is also analyzed in this paper.
文摘A systematic approach is used to analyze the noise in CMOS low noise amplifier(LNA),including channel noise and induced gate noise in MOS devices.A new analytical formula for noise figure is proposed.Based on this formula,the impacts of distributed gate resistance and intrinsic channel resistance on noise performance are discussed.Two kinds of noise optimization approaches are performed and applied to the design of a 5 2GHz CMOS LNA.
基金the Fundamental Research Funds for the Central Public Welfare Research Institutes:ZZ 20191606National Natural Science Foundation of China:82050006。
文摘Background:Continuous and porous low hydraulic resistance channels(LHRCs)are important structures of meridians in traditional Chinese medicine(TCM).In this study,based on the previous research on LHRCs along meridian paths(LHRCMs)in mini-pig,we aimed to detect the low hydraulic resistance point(LHRP)and display the LHRCMs in rats.Methods:A technique for measuring interstitial hydraulic resistance(Rh)in rats was established to detect and measure the Rh along the conception vessel(CV)in TCM,and Alcian Blue(AB)solution was injected into the LHRP along the CV.The interstitial fluid pressure(IFP)of the LHRP was measured before and after AB injection.Then,the distribution characteristics of the AB solution were investigated to explore the relationship between AB tracks and meridian paths in TCM.Results:The positions of the LHRPs coincided with the low impedance points(LIPs)of the rat skin along the CV.The Rh value along the CV(10.37,1.26,×10^(6)dyne s cm^(-5))was significantly lower than that in the non-meridian area(19.13±1.37,×10^(6)dyne s cm^(-5),P<0.01).After AB injection,the IFP of the LHRP was 2.52 mmHg,which was higher than that before AB injection.The AB tracks(ABT)along the CV,spleen meridian,and kidney meridian appeared in one or two directions,with single or multiple paths and uneven thickness and length.The appearance rate was 73.33%.Conclusions:LHRCMs existed not only in minipigs but also in rats.The LHRCMs could be observed after AB injection into the LHRP in the subcutaneous connective tissues of rats.
基金financially supported by the National Natural Science Foundation of China (Nos. 81330031 and 81271701)
文摘A two-step equal channel angular extrusion(ECAE) procedure was used to process pure Mg. The effects of ECAE processing temperature on the microstructure, mechanical properties, and corrosion behavior of pure Mg were studied. The results show that the average grain size of pure Mg decreases with decreasing extrusion temperature. After ECAE processing at 473 K, fine and equiaxed grains(~9 μm) are obtained. The sample processed at 473 K exhibits the excellent mechanical properties, whereas the sample processed at 633 K has the lowest corrosion rate. The improved corrosion resistance and mechanical properties of pure Mg by ECAE are ascribed to grain refinement and microstructural modification.
文摘This study focuses on modeling the effects of deep hole traps, mainly the effect of the substrate(backgating effect) in a GaAs transistor MESFT. This effect is explained by the existence, at the interface, of a space charge zone. Any modulation in this area leads to response levels trapping the holes therein to the operating temperature. We subsequently developed a model treating the channel substrate interface as an N–P junction, allowing us to deduce the time dependence of the component parameters of the total resistance R ds, the pinch-off voltage V P, channel resistance, fully open R co and the parasitic series resistance R S to bind the effect trap holes H1and H0. When compared with the experimental results, the values of the R DS(t S/ model for both traps show that there is an agreement between theory and experiment; it has inferred parameter traps, namely the density and the time constant of the trap. This means that a space charge region exists at the channel–substrate interface and that the properties can be approximated to an N–P junction.
文摘A detailed investigation carried out, with the help of extensive simulations using the TCAD device simulator Sentaurus, with the aim of achieving an understanding of the effects of variations in gate and drain potentials on the device characteristics of a silicon double-gate tunnel field effect transistor(Si-DG TFET) is reported in this paper. The investigation is mainly aimed at studying electrical properties such as the electric potential, the electron density, and the electron quasi-Fermi potential in a channel. From the simulation results, it is found that the electrical properties in the channel region of the DG TFET are different from those for a DG MOSFET. It is observed that the central channel potential of the DG TFET is not pinned to a fixed potential even after the threshold is passed(as in the case of the DG MOSFET); instead, it initially increases and later on decreases with increasing gate voltage, and this is also the behavior exhibited by the surface potential of the device. However, the drain current always increases with the applied gate voltage. It is also observed that the electron quasi-Fermi potential(e QFP)decreases as the channel potential starts to decrease, and there are hiphops in the channel e QFP for higher applied drain voltages. The channel regime resistance is also observed for higher gate length, which has a great effect on the I–V characteristics of the DG TFET device. These channel regime electrical properties will be very useful for determining the tunneling current; thus these results may have further uses in developing analytical current models.
基金Project supported by the National Natural Science Foundation of China(No.61076065)the Natural Science Foundation of Tianjin, China(No.07JCYBJC12700)
文摘We have investigated the properties of C60-based organic field effect transistors(OFETs) with a tris(8- hydroxyquinoline) aluminum(Alq3) buffer layer inserted between the source/drain electrodes and the active material. The electrical characteristics of OFETs are improved with the insertion of Alq3 film.The peak field effect mobility is increased to 1.28×10^(-2) cm^2/(V·s) and the threshold voltage is decreased to 10 V when the thickness of the Alq3 is 10 nm.The reason for the improved performance of the devices is probably due to the prevention of metal atoms diffusing into the C60 active layer and the reduction of the channel resistance in Alq3 films.