期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于关联策略的CTR-GCN人体骨骼行为识别
1
作者 刘廷龙 康斌 《计算机技术与发展》 2023年第10期42-46,共5页
针对骨骼的人体行为识别中表达人体的重要信息的关节点分区策略不能够充分表达行为的问题,提出了一种关联策略的CTR-GCN人体骨骼行为识别模型。首先,通过在智能信道拓扑的细化图卷积网络模型(CTR-GCN)上增加关联策略,能够动态地学习不... 针对骨骼的人体行为识别中表达人体的重要信息的关节点分区策略不能够充分表达行为的问题,提出了一种关联策略的CTR-GCN人体骨骼行为识别模型。首先,通过在智能信道拓扑的细化图卷积网络模型(CTR-GCN)上增加关联策略,能够动态地学习不同的拓扑结构和高效地在不同信道中放大连接点特征,同时提升关键关节点的关联特性;然后,网络模型通过学习一个共享的拓扑并且用特定的信道关系来重新定义每一个信道并通过理论分析统一模型;最后,重新定义模型结构。信道内部局部节点的关联信息得到有效体现,对细微的动作识别具有更强的聚合能力。提出的关联策略的智能信道拓扑图卷积网络模型(ASCTR-GCN)在基于智能拓扑细化卷积网络的基础上比CTR-GCN方法增强了关节点之间内在的关联性,大大提高了骨关节点信息在空间上的识别精度。实验结果表明,在常用的NTU RGB+D和NW-UCLA数据集中识别精度分别达到93.6%(X-View)、97.6%(X-Sub)、97.2%(Top 1),准确率得到提高。 展开更多
关键词 关节点 智能拓扑细化图卷积网络 关联策略 骨骼行为识别 特征提取
下载PDF
Association Strategy Graph Convolutional Neural Network for Human Skeletal Behavior Recognition
2
作者 Tinglong Liu 《国际计算机前沿大会会议论文集》 2022年第1期403-412,共10页
Aiming at the problem that the joint point partition strategy expresses the important information of the human body in the human body behavior recognition of bones cannot fully express the behavior,anRCTR-GCNhuman bon... Aiming at the problem that the joint point partition strategy expresses the important information of the human body in the human body behavior recognition of bones cannot fully express the behavior,anRCTR-GCNhuman bone behavior recognition model of the correlation strategy is proposed.First,by adding an association strategy of a refined graph convolutional network model(CTR-GCN)of the smart channel topology,it can dynamically learn different topological structures and efficiently amplify the characteristics of the connection points in different channels while improving the key joint points of associated characteristics.Then,the network model redefines each channel by learning a shared topology and uses a specific channel relationship to unify the model through theoretical analysis;finally,redefining the model structure effectively reflects the associated information of local nodeswithin the channel.Action recognition has stronger aggregation capabilities.The results show that the recognition accuracy in the commonly used NTU RGB+D and NW-UCLA datasets reaches 93.6%(X-View),97.6%(XSub),and 97.2%,respectively.The experimental results show that the accuracy rate is improved. 展开更多
关键词 VERTICES Channelwise topology refinement graph convolution net Association strategy Skeleton action recognition Feature extraction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部