The Singular Integral Operators Method (S.I.O.M.) is applied to the determination of the free-surface profile of an un-steady flow over a spillway, which defines a classical hydraulics problem in open channel flow. Th...The Singular Integral Operators Method (S.I.O.M.) is applied to the determination of the free-surface profile of an un-steady flow over a spillway, which defines a classical hydraulics problem in open channel flow. Thus, with a known flow rate Q, then the velocities and the elevations are computed on the free surface of the spillway flow. For the numerical evaluation of the singular integral equations both constant and linear elements are used. An application is finally given to the determination of the free-surface profile of a special spillway and comparing the numerical results with corresponding results by the Boundary Integral Equation Method (B.I.E.M.) and by using experiments.展开更多
The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent ...The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent to the Bridgend River at Riverdale, Bunamayne, Co. Donegal, Ireland is used herein. For this study the flooded site shall be referred to as the “Hegarty property”. A structure in the form of a stone arched culvert is located directly adjacent to the two-storey detached dwelling house on the Hegarty Property. While the culvert is referred to locally as a bridge, within this research the word culvert will be used in connection with the structure. The culvert has a concrete surrounded utility (watermain) crossing at a gradient below the culvert soffit on the upstream face of the structure. The utility obstructed flow through the culvert and contributed to the flooding event. Given the implication of climate change and the increased probability of more extreme flooding events, it was decided to explore the case study to ascertain the factors that contribute to flooding events when utilities are positioned at culvert or bridge structures. This work was completed to assist undergraduate students, researchers, and local authorities in a relatively unknown area of flood causation.展开更多
To explore eutrophication and algal bloom mechanisms in channel type reservoirs, a novel enclosure experiment was conducted by changing light intensity (LI) in the Daning River of the Three Gorges Reservoir (TGR)....To explore eutrophication and algal bloom mechanisms in channel type reservoirs, a novel enclosure experiment was conducted by changing light intensity (LI) in the Daning River of the Three Gorges Reservoir (TGR). Square enclosures (side 5.0 m) were covered on the surface with shading materials of different thickness, and with their bases open to the river. Changes and characteristics of the main eutrophication factors under the same water quality and hydrodynamic conditions but different LI were evaluated. All experimental water samples were neutral and alkalescent, with high nitrogen and phosphate concentrations, low potassium permanganate index, stable water quality, and different LI. At the same water depth, LI decreased with increasing shade material, while dissolved oxygen and water temperature were both stable. The growth peak of phytoplankton was with light of 345-4390 lux underwater or 558-7450 lux above the water surface, and water temperature of 25.6--26.5℃. Algae were observed in all water samples, accounting for 6 phylum and 57 species, with algal density changing frequently. The results showed that significantly strong or weak light was unfavorable for phytoplankton growth and the function together with suitable temperature and LI and ample sunshine encouraged algal blooms under the same water quality and hydrodynamic conditions. Correlation analysis indicated that algae reduced gradually lengthwise along water depth in the same enclosure while pH became high. The power exponent relationship between chlorophyll a (Chl-a) and LI was found by curve fitting, that is Chl-a = K(LI)n.展开更多
文摘The Singular Integral Operators Method (S.I.O.M.) is applied to the determination of the free-surface profile of an un-steady flow over a spillway, which defines a classical hydraulics problem in open channel flow. Thus, with a known flow rate Q, then the velocities and the elevations are computed on the free surface of the spillway flow. For the numerical evaluation of the singular integral equations both constant and linear elements are used. An application is finally given to the determination of the free-surface profile of a special spillway and comparing the numerical results with corresponding results by the Boundary Integral Equation Method (B.I.E.M.) and by using experiments.
文摘The background to this research was a flooding incident that occurred in Bridgend, Co. Donegal, Ireland in August 2017. While several properties were flooded, a flooding case study of a single dwelling house adjacent to the Bridgend River at Riverdale, Bunamayne, Co. Donegal, Ireland is used herein. For this study the flooded site shall be referred to as the “Hegarty property”. A structure in the form of a stone arched culvert is located directly adjacent to the two-storey detached dwelling house on the Hegarty Property. While the culvert is referred to locally as a bridge, within this research the word culvert will be used in connection with the structure. The culvert has a concrete surrounded utility (watermain) crossing at a gradient below the culvert soffit on the upstream face of the structure. The utility obstructed flow through the culvert and contributed to the flooding event. Given the implication of climate change and the increased probability of more extreme flooding events, it was decided to explore the case study to ascertain the factors that contribute to flooding events when utilities are positioned at culvert or bridge structures. This work was completed to assist undergraduate students, researchers, and local authorities in a relatively unknown area of flood causation.
基金supported by the Major Projects on Control and Rectification of Water Body Pollution of China (No. 2009ZX07317-006)the National Natural Science Foundation of China (No. 41001347, 40971259)+3 种基金the China Postdoctoral Science Foundation (No. 20100470759)the Shanghai Postdoctoral Scientific Program (No. 10R21412300)the Program of Shanghai Subject Chief Scientist (No. 10XD1401600)the International Cooperation Program of Ministry Science and Technology Development of Sino-Germany (No. 2007DFA90510)
文摘To explore eutrophication and algal bloom mechanisms in channel type reservoirs, a novel enclosure experiment was conducted by changing light intensity (LI) in the Daning River of the Three Gorges Reservoir (TGR). Square enclosures (side 5.0 m) were covered on the surface with shading materials of different thickness, and with their bases open to the river. Changes and characteristics of the main eutrophication factors under the same water quality and hydrodynamic conditions but different LI were evaluated. All experimental water samples were neutral and alkalescent, with high nitrogen and phosphate concentrations, low potassium permanganate index, stable water quality, and different LI. At the same water depth, LI decreased with increasing shade material, while dissolved oxygen and water temperature were both stable. The growth peak of phytoplankton was with light of 345-4390 lux underwater or 558-7450 lux above the water surface, and water temperature of 25.6--26.5℃. Algae were observed in all water samples, accounting for 6 phylum and 57 species, with algal density changing frequently. The results showed that significantly strong or weak light was unfavorable for phytoplankton growth and the function together with suitable temperature and LI and ample sunshine encouraged algal blooms under the same water quality and hydrodynamic conditions. Correlation analysis indicated that algae reduced gradually lengthwise along water depth in the same enclosure while pH became high. The power exponent relationship between chlorophyll a (Chl-a) and LI was found by curve fitting, that is Chl-a = K(LI)n.