Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines...Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.展开更多
The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous contr...The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.展开更多
In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fracti...In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.展开更多
The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)frac...The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.展开更多
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau...To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.展开更多
To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on ...To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.展开更多
In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is a...In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.展开更多
This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a gen...This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.展开更多
Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-s...Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.展开更多
This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular...This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular,the zero equilibrium point stability is investigated to demonstrate that the discrete macroeconomic system exhibits chaotic behavior.Through using bifurcation diagrams,phase attractors,the maximum Lyapunov exponent and the 0–1 test,we verified that chaos exists in the new model with incommensurate fractional orders.Additionally,a complexity analysis is carried out utilizing the approximation entropy(ApEn)and C_(0)complexity to prove that chaos exists.Finally,the main findings of this study are presented using numerical simulations.展开更多
The generation method of the key stream and the structure of the algorithm determine the security of the cryptosystem.The classical chaotic map has simple dynamic behavior and few control parameters,so it is not suita...The generation method of the key stream and the structure of the algorithm determine the security of the cryptosystem.The classical chaotic map has simple dynamic behavior and few control parameters,so it is not suitable for modern cryptography.In this paper,we design a new 2D hyperchaotic system called 2D simple structure and complex dynamic behavior map(2D-SSCDB).The 2D-SSCDB has a simple structure but has complex dynamic behavior.The Lyapunov exponent verifies that the 2D-SSCDB has hyperchaotic behavior,and the parameter space in the hyperchaotic state is extensive and continuous.Trajectory analysis and some randomness tests verify that the 2D-SSCDB can generate random sequences with good performance.Next,to verify the excellent performance of the 2D-SSCDB,we use the 2D-SSCDB to generate a keystream for color image encryption.In the encryption algorithm,the encryption algorithm scrambles and diffuses simultaneously,increasing the cryptographic system’s security.The horizontal correlation,vertical correlation,and diagonal correlation of ciphertext are−0.0004,−0.0004 and 0.0007,respectively.The average information entropy of the ciphertext is 7.9993.In addition,the designed encryption algorithm reduces the correlation between the three channels of the color image.Security analysis shows that the color image encryption algorithm designed using 2DSSCDB has good security,can resist standard attack methods,and has high efficiency.展开更多
Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT w...Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.展开更多
The utilization of thin plate systems based on acoustic vibration holds significant importance in micro-nano manipulation and the exploration of nonlinear science. This paper focuses on the analysis of an actual thin ...The utilization of thin plate systems based on acoustic vibration holds significant importance in micro-nano manipulation and the exploration of nonlinear science. This paper focuses on the analysis of an actual thin plate system driven by acoustic wave signals. By combining the mechanical analysis of thin plate microelements with the Bubnov–Galerkin integral method, the governing equation for the forced vibration of a square thin plate is derived. Notably,the reaction force of the thin plate vibration system is defined as f=α|w|, resembling Hooke’s law. The energy function and energy level curve of the system are also analyzed. Subsequently, the amplitude–frequency response function of the thin plate oscillator is solved using the harmonic balance method. Through numerical simulations, the amplitude–frequency curves are analyzed for different vibration modes under the influence of various parameters. Furthermore, the paper demonstrates the occurrence of conservative chaotic motions in the thin plate oscillator using theoretical and numerical methods. Dynamics maps illustrating the system’s states are presented to reveal the evolution laws of the system. By exploring the effects of force fields and system energy, the underlying mechanism of chaos is interpreted. Additionally, the phenomenon of chaos in the oscillator can be controlled through the method of velocity and displacement states feedback, which holds significance for engineering applications.展开更多
A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to ...A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to parameters allows it obtains 16 different attractors by changing only one parameter.The various transient behaviors and excellent spectral entropy and C0 complexity values of the system can also reflect the high complexity of the system.A circuit is designed and verified the feasibility of the system from the physical level.Finally,the system is applied to image encryption,and the security of the encryption system is analyzed from multiple aspects,providing a reference for the application of such memristive chaotic systems.展开更多
This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other...This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.展开更多
Chaotic maps are widely used to design pseudo-random sequence generators, chaotic ciphers, and secure communication systems. Nevertheless, the dynamic characteristics of digital chaos in finite-precision domain must b...Chaotic maps are widely used to design pseudo-random sequence generators, chaotic ciphers, and secure communication systems. Nevertheless, the dynamic characteristics of digital chaos in finite-precision domain must be degraded in varying degrees due to the limited calculation accuracy of hardware equipment. To assess the dynamic properties of digital chaos, we design a periodic cycle location algorithm(PCLA) from a new perspective to analyze the dynamic degradation of digital chaos. The PCLA can divide the state-mapping graph of digital chaos into several connected subgraphs for the purpose of locating all fixed points and periodic limit cycles contained in a digital chaotic map. To test the versatility and availability of our proposed algorithm, the periodic distribution and security of 1-D logistic maps and 2-D Baker maps are analyzed in detail. Moreover, this algorithm is helpful to the design of anti-degradation algorithms for digital chaotic dynamics. These related studies can promote the application of chaos in engineering practice.展开更多
In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with...In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.展开更多
The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication ...The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.展开更多
The advancements in technology have substantially grown the size of image data.Traditional image encryption algorithms have limited capabilities to deal with the emerging challenges in big data,including compression a...The advancements in technology have substantially grown the size of image data.Traditional image encryption algorithms have limited capabilities to deal with the emerging challenges in big data,including compression and noise toleration.An image encryption method that is based on chaotic maps and orthogonal matrix is proposed in this study.The proposed scheme is built on the intriguing characteristics of an orthogonal matrix.Gram Schmidt disperses the values of pixels in a plaintext image by generating a random orthogonal matrix using logistic chaotic map.Following the diffusion process,a block-wise random permutation of the data is performed using multi-chaos.The proposed scheme provides sufficient security and resilience to JPEG compression and channel noise through a series of experiments and security evaluations.It enables Partial Encryption(PE)for faster processing as well as complete encryption for increased security.The higher values of the number of pixels change rates and unified average change intensity confirm the security of the encryption scheme.In contrast to other schemes,the proposed approach can perform full and partial encryption depending on security requirements.展开更多
Cyberattack detection has become an important research domain owing to increasing number of cybercrimes in recent years.Both Machine Learning(ML)and Deep Learning(DL)classification models are useful in effective ident...Cyberattack detection has become an important research domain owing to increasing number of cybercrimes in recent years.Both Machine Learning(ML)and Deep Learning(DL)classification models are useful in effective identification and classification of cyberattacks.In addition,the involvement of hyper parameters in DL models has a significantly influence upon the overall performance of the classification models.In this background,the current study develops Intelligent Cybersecurity Classification using Chaos Game Optimization with Deep Learning(ICC-CGODL)Model.The goal of the proposed ICC-CGODL model is to recognize and categorize different kinds of attacks made upon data.Besides,ICC-CGODL model primarily performs min-max normalization process to normalize the data into uniform format.In addition,Bidirectional Gated Recurrent Unit(BiGRU)model is utilized for detection and classification of cyberattacks.Moreover,CGO algorithm is also exploited to adjust the hyper parameters involved in BiGRU model which is the novelty of current work.A wide-range of simulation analysis was conducted on benchmark dataset and the results obtained confirmed the significant performance of ICC-CGODL technique than the recent approaches.展开更多
基金supported by Science and Technology Project of Yunnan Provincial Transportation Department(Grant No.25 of 2018)the National Natural Science Foundation of China(Grant No.52279107)The authors are grateful for the support by the China Scholarship Council(CSC No.202206260203 and No.201906690049).
文摘Face stability is an essential issue in tunnel design and construction.Layered rock masses are typical and ubiquitous;uncertainties in rock properties always exist.In view of this,a comprehensive method,which combines the Upper bound Limit analysis of Tunnel face stability,the Polynomial Chaos Kriging,the Monte-Carlo Simulation and Analysis of Covariance method(ULT-PCK-MA),is proposed to investigate the seismic stability of tunnel faces.A two-dimensional analytical model of ULT is developed to evaluate the virtual support force based on the upper bound limit analysis.An efficient probabilistic analysis method PCK-MA based on the adaptive Polynomial Chaos Kriging metamodel is then implemented to investigate the parameter uncertainty effects.Ten input parameters,including geological strength indices,uniaxial compressive strengths and constants for three rock formations,and the horizontal seismic coefficients,are treated as random variables.The effects of these parameter uncertainties on the failure probability and sensitivity indices are discussed.In addition,the effects of weak layer position,the middle layer thickness and quality,the tunnel diameter,the parameters correlation,and the seismic loadings are investigated,respectively.The results show that the layer distributions significantly influence the tunnel face probabilistic stability,particularly when the weak rock is present in the bottom layer.The efficiency of the proposed ULT-PCK-MA is validated,which is expected to facilitate the engineering design and construction.
文摘The mechanical horizontal platform(MHP)system exhibits a rich chaotic behavior.The chaotic MHP system has applications in the earthquake and offshore industries.This article proposes a robust adaptive continuous control(RACC)algorithm.It investigates the control and synchronization of chaos in the uncertain MHP system with time-delay in the presence of unknown state-dependent and time-dependent disturbances.The closed-loop system contains most of the nonlinear terms that enhance the complexity of the dynamical system;it improves the efficiency of the closed-loop.The proposed RACC approach(a)accomplishes faster convergence of the perturbed state variables(synchronization errors)to the desired steady-state,(b)eradicates the effect of unknown state-dependent and time-dependent disturbances,and(c)suppresses undesirable chattering in the feedback control inputs.This paper describes a detailed closed-loop stability analysis based on the Lyapunov-Krasovskii functional theory and Lyapunov stability technique.It provides parameter adaptation laws that confirm the convergence of the uncertain parameters to some constant values.The computer simulation results endorse the theoretical findings and provide a comparative performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62071496,61901530,and 62061008)the Natural Science Foundation of Hunan Province of China(Grant No.2020JJ5767).
文摘In recent years,fractional-order chaotic maps have been paid more attention in publications because of the memory effect.This paper presents a novel variable-order fractional sine map(VFSM)based on the discrete fractional calculus.Specially,the order is defined as an iterative function that incorporates the current state of the system.By analyzing phase diagrams,time sequences,bifurcations,Lyapunov exponents and fuzzy entropy complexity,the dynamics of the proposed map are investigated comparing with the constant-order fractional sine map.The results reveal that the variable order has a good effect on improving the chaotic performance,and it enlarges the range of available parameter values as well as reduces non-chaotic windows.Multiple coexisting attractors also enrich the dynamics of VFSM and prove its sensitivity to initial values.Moreover,the sequence generated by the proposed map passes the statistical test for pseudorandom number and shows strong robustness to parameter estimation,which proves the potential applications in the field of information security.
文摘The dynamic analysis of financial systems is a developing field that combines mathematics and economics to understand and explain fluctuations in financial markets.This paper introduces a new three-dimensional(3D)fractional financial map and we dissect its nonlinear dynamics system under commensurate and incommensurate orders.As such,we evaluate when the equilibrium points are stable or unstable at various fractional orders.We use many numerical methods,phase plots in 2D and 3D projections,bifurcation diagrams and the maximum Lyapunov exponent.These techniques reveal that financial maps exhibit chaotic attractor behavior.This study is grounded on the Caputo-like discrete operator,which is specifically influenced by the variance of the commensurate and incommensurate orders.Furthermore,we confirm the presence and measure the complexity of chaos in financial maps by the 0-1 test and the approximate entropy algorithm.Additionally,we offer nonlinear-type controllers to stabilize the fractional financial map.The numerical results of this study are obtained using MATLAB.
基金This work is supported by Natural Science Foundation of Anhui under Grant 1908085MF207,KJ2020A1215,KJ2021A1251 and 2023AH052856the Excellent Youth Talent Support Foundation of Anhui underGrant gxyqZD2021142the Quality Engineering Project of Anhui under Grant 2021jyxm1117,2021kcszsfkc307,2022xsxx158 and 2022jcbs043.
文摘To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation.
基金Project([2018]3010)supported by the Guizhou Provincial Science and Technology Major Project,China。
文摘To address the seismic face stability challenges encountered in urban and subsea tunnel construction,an efficient probabilistic analysis framework for shield tunnel faces under seismic conditions is proposed.Based on the upper-bound theory of limit analysis,an improved three-dimensional discrete deterministic mechanism,accounting for the heterogeneous nature of soil media,is formulated to evaluate seismic face stability.The metamodel of failure probabilistic assessments for seismic tunnel faces is constructed by integrating the sparse polynomial chaos expansion method(SPCE)with the modified pseudo-dynamic approach(MPD).The improved deterministic model is validated by comparing with published literature and numerical simulations results,and the SPCE-MPD metamodel is examined with the traditional MCS method.Based on the SPCE-MPD metamodels,the seismic effects on face failure probability and reliability index are presented and the global sensitivity analysis(GSA)is involved to reflect the influence order of seismic action parameters.Finally,the proposed approach is tested to be effective by a engineering case of the Chengdu outer ring tunnel.The results show that higher uncertainty of seismic response on face stability should be noticed in areas with intense earthquakes and variation of seismic wave velocity has the most profound influence on tunnel face stability.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(No.62102444)a Major Research Project in Higher Education Institutions in Henan Province(No.23A560015).
文摘In this paper,an adaptive polynomial chaos expansion method(PCE)based on the method of moments(MoM)is proposed to construct surrogate models for electromagnetic scattering and further sensitivity analysis.The MoM is applied to accurately solve the electric field integral equation(EFIE)of electromagnetic scattering from homogeneous dielectric targets.Within the bistatic radar cross section(RCS)as the research object,the adaptive PCE algorithm is devoted to selecting the appropriate order to construct the multivariate surrogate model.The corresponding sensitivity results are given by the further derivative operation,which is compared with those of the finite difference method(FDM).Several examples are provided to demonstrate the effectiveness of the proposed algorithm for sensitivity analysis of electromagnetic scattering from homogeneous dielectric targets.
基金Project supported by the National Research Foundation of Korea(Nos.NRF-2020R1C1C1011970 and NRF-2018R1A5A7023490)。
文摘This paper presents a new computational method for forward uncertainty quantification(UQ)analyses on large-scale structural systems in the presence of arbitrary and dependent random inputs.The method consists of a generalized polynomial chaos expansion(GPCE)for statistical moment and reliability analyses associated with the stochastic output and a static reanalysis method to generate the input-output data set.In the reanalysis,we employ substructuring for a structure to isolate its local regions that vary due to random inputs.This allows for avoiding repeated computations of invariant substructures while generating the input-output data set.Combining substructuring with static condensation further improves the computational efficiency of the reanalysis without losing accuracy.Consequently,the GPCE with the static reanalysis method can achieve significant computational saving,thus mitigating the curse of dimensionality to some degree for UQ under high-dimensional inputs.The numerical results obtained from a simple structure indicate that the proposed method for UQ produces accurate solutions more efficiently than the GPCE using full finite element analyses(FEAs).We also demonstrate the efficiency and scalability of the proposed method by executing UQ for a large-scale wing-box structure under ten-dimensional(all-dependent)random inputs.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups(Grant Number RGP.2/246/44),B.B.,and https://www.kku.edu.sa/en.
文摘Heart monitoring improves life quality.Electrocardiograms(ECGs or EKGs)detect heart irregularities.Machine learning algorithms can create a few ECG diagnosis processing methods.The first method uses raw ECG and time-series data.The second method classifies the ECG by patient experience.The third technique translates ECG impulses into Q waves,R waves and S waves(QRS)features using richer information.Because ECG signals vary naturally between humans and activities,we will combine the three feature selection methods to improve classification accuracy and diagnosis.Classifications using all three approaches have not been examined till now.Several researchers found that Machine Learning(ML)techniques can improve ECG classification.This study will compare popular machine learning techniques to evaluate ECG features.Four algorithms—Support Vector Machine(SVM),Decision Tree,Naive Bayes,and Neural Network—compare categorization results.SVM plus prior knowledge has the highest accuracy(99%)of the four ML methods.QRS characteristics failed to identify signals without chaos theory.With 99.8%classification accuracy,the Decision Tree technique outperformed all previous experiments.
文摘This study proposes a novel fractional discrete-time macroeconomic system with incommensurate order.The dynamical behavior of the proposed macroeconomic model is investigated analytically and numerically.In particular,the zero equilibrium point stability is investigated to demonstrate that the discrete macroeconomic system exhibits chaotic behavior.Through using bifurcation diagrams,phase attractors,the maximum Lyapunov exponent and the 0–1 test,we verified that chaos exists in the new model with incommensurate fractional orders.Additionally,a complexity analysis is carried out utilizing the approximation entropy(ApEn)and C_(0)complexity to prove that chaos exists.Finally,the main findings of this study are presented using numerical simulations.
基金Funds for New Generation Information Technology of the Industry-University-Research Innovation Foundation of China University(No.2020ITA03022).
文摘The generation method of the key stream and the structure of the algorithm determine the security of the cryptosystem.The classical chaotic map has simple dynamic behavior and few control parameters,so it is not suitable for modern cryptography.In this paper,we design a new 2D hyperchaotic system called 2D simple structure and complex dynamic behavior map(2D-SSCDB).The 2D-SSCDB has a simple structure but has complex dynamic behavior.The Lyapunov exponent verifies that the 2D-SSCDB has hyperchaotic behavior,and the parameter space in the hyperchaotic state is extensive and continuous.Trajectory analysis and some randomness tests verify that the 2D-SSCDB can generate random sequences with good performance.Next,to verify the excellent performance of the 2D-SSCDB,we use the 2D-SSCDB to generate a keystream for color image encryption.In the encryption algorithm,the encryption algorithm scrambles and diffuses simultaneously,increasing the cryptographic system’s security.The horizontal correlation,vertical correlation,and diagonal correlation of ciphertext are−0.0004,−0.0004 and 0.0007,respectively.The average information entropy of the ciphertext is 7.9993.In addition,the designed encryption algorithm reduces the correlation between the three channels of the color image.Security analysis shows that the color image encryption algorithm designed using 2DSSCDB has good security,can resist standard attack methods,and has high efficiency.
基金funded by the National Natural Science Foundation of China(42071300)the Fujian Province Natural Science(2020J01504)+4 种基金the China Postdoctoral Science Foundation(2018M630728)the Open Fund of Fujian Provincial Key Laboratory of Resources and Environment Monitoring&Sustainable Management and Utilization(ZD202102)the Program for Innovative Research Team in Science and Technology in Fujian Province University(KC190002)the Open Fund of University Key Lab of Geomatics Technology and Optimize Resources Utilization in Fujian Province(fafugeo201901)supported by the Research Project of Jinjiang Fuda Science and Education Park Development Center(2019-JJFDKY-17)。
文摘Biochemical components of Moso bamboo(Phyllostachys pubescens)are critical to physiological and ecological processes and play an important role in the material and energy cycles of the ecosystem.The coupled PROSPECT with SAIL(PROSAIL)radiative transfer model is widely used for vegetation biochemical component content inversion.However,the presence of leaf-eating pests,such as Pantana phyllostachysae Chao(PPC),weakens the performance of the model for estimating biochemical components of Moso bamboo and thus must be considered.Therefore,this study considered pest-induced stress signals associated with Sentinel-2A/B images and field data and established multiple sets of biochemical canopy reflectance look-up tables(LUTs)based on the PROSAIL framework by setting different parameter ranges according to infestation levels.Quantitative inversions of leaf area index(LAI),leaf chlorophyll content(LCC),and leaf equivalent water thickness(LEWT)were derived.The scale conversions from LCC to canopy chlorophyll content(CCC)and LEWT to canopy equivalent water thickness(CEWT)were calculated.The results showed that LAI,CCC,and CEWT were inversely related with PPC-induced stress.When applying multiple LUTs,the p-values were<0.01;the R2 values for LAI,CCC,and CEWT were 0.71,0.68,and 0.65 with root mean square error(RMSE)(normalized RMSE,NRMSE)values of 0.38(0.16),17.56μg cm-2(0.20),and 0.02 cm(0.51),respectively.Compared to the values obtained for the traditional PROSAIL model,for October,R2 values increased by 0.05 and 0.10 and NRMSE decreased by 0.09 and 0.02 for CCC and CEWT,respectively and RMSE decreased by 0.35μg cm-2 for CCC.The feasibility of the inverse strategy for integrating pest-induced stress factors into the PROSAIL model,while establishing multiple LUTs under different pest-induced damage levels,was successfully demonstrated and can potentially enhance future vegetation parameter inversion and monitoring of bamboo forest health and ecosystems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61973172, 62003177, 62103204, 62003175, and 61973175)the Joint Fund of the Ministry of Education for Equipment Pre-research (Grant No. 8091B022133)General Terminal IC Interdisciplinary Science Center of Nankai University。
文摘The utilization of thin plate systems based on acoustic vibration holds significant importance in micro-nano manipulation and the exploration of nonlinear science. This paper focuses on the analysis of an actual thin plate system driven by acoustic wave signals. By combining the mechanical analysis of thin plate microelements with the Bubnov–Galerkin integral method, the governing equation for the forced vibration of a square thin plate is derived. Notably,the reaction force of the thin plate vibration system is defined as f=α|w|, resembling Hooke’s law. The energy function and energy level curve of the system are also analyzed. Subsequently, the amplitude–frequency response function of the thin plate oscillator is solved using the harmonic balance method. Through numerical simulations, the amplitude–frequency curves are analyzed for different vibration modes under the influence of various parameters. Furthermore, the paper demonstrates the occurrence of conservative chaotic motions in the thin plate oscillator using theoretical and numerical methods. Dynamics maps illustrating the system’s states are presented to reveal the evolution laws of the system. By exploring the effects of force fields and system energy, the underlying mechanism of chaos is interpreted. Additionally, the phenomenon of chaos in the oscillator can be controlled through the method of velocity and displacement states feedback, which holds significance for engineering applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.U1612442)Science and Technology Special Foundation Project of Guizhou Water Resources Department(Grant No.KT202236)。
文摘A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to parameters allows it obtains 16 different attractors by changing only one parameter.The various transient behaviors and excellent spectral entropy and C0 complexity values of the system can also reflect the high complexity of the system.A circuit is designed and verified the feasibility of the system from the physical level.Finally,the system is applied to image encryption,and the security of the encryption system is analyzed from multiple aspects,providing a reference for the application of such memristive chaotic systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 62366014 and 61961019)the Natural Science Foundation of Jiangxi Province, China (Grant No. 20232BAB202008)。
文摘This article proposes a non-ideal flux-controlled memristor with a bisymmetric sawtooth piecewise function, and a new multi-wing memristive chaotic system(MMCS) based on the memristor is generated. Compared with other existing MMCSs, the most eye-catching point of the proposed MMCS is that the amplitude of the wing will enlarge towards the poles as the number of wings increases. Diverse coexisting attractors are numerically found in the MMCS, including chaos,quasi-period, and stable point. The circuits of the proposed memristor and MMCS are designed and the obtained results demonstrate their validity and reliability.
基金Project supported by the National Natural Science Foundation of China (Grant No.62101178)the Fundamental Research Funds for the Higher Institutions in Heilongjiang Province,China (Grant No.2020-KYYWF-1033)。
文摘Chaotic maps are widely used to design pseudo-random sequence generators, chaotic ciphers, and secure communication systems. Nevertheless, the dynamic characteristics of digital chaos in finite-precision domain must be degraded in varying degrees due to the limited calculation accuracy of hardware equipment. To assess the dynamic properties of digital chaos, we design a periodic cycle location algorithm(PCLA) from a new perspective to analyze the dynamic degradation of digital chaos. The PCLA can divide the state-mapping graph of digital chaos into several connected subgraphs for the purpose of locating all fixed points and periodic limit cycles contained in a digital chaotic map. To test the versatility and availability of our proposed algorithm, the periodic distribution and security of 1-D logistic maps and 2-D Baker maps are analyzed in detail. Moreover, this algorithm is helpful to the design of anti-degradation algorithms for digital chaotic dynamics. These related studies can promote the application of chaos in engineering practice.
基金funded by the Center for Research Excellence,Incubation Management Center,Universiti Sultan Zainal Abidin via an internal grant UniSZA/2021/SRGSIC/07.
文摘In recent years,there are numerous studies on chaotic systems with special equilibrium curves having various shapes such as circle,butterfly,heart and apple.This paper describes a new 3-D chaotic dynamical system with a capsule-shaped equilibrium curve.The proposed chaotic system has two quadratic,two cubic and two quartic nonlinear terms.It is noted that the proposed chaotic system has a hidden attractor since it has an infinite number of equilibrium points.It is also established that the proposed chaotic system exhibits multi-stability with two coexisting chaotic attractors for the same parameter values but differential initial states.A detailed bifurcation analysis with respect to variations in the system parameters is portrayed for the new chaotic system with capsule equilibrium curve.We have shown MATLAB plots to illustrate the capsule equilibrium curve,phase orbits of the new chaotic system,bifurcation diagrams and multi-stability.As an engineering application,we have proposed a speech cryptosystem with a numerical algorithm,which is based on our novel 3-D chaotic system with a capsule-shaped equilibrium curve.The proposed speech cryptosystem follows its security evolution and implementation on Field Programmable Gate Array(FPGA)platform.Experimental results show that the proposed encryption system utilizes 33%of the FPGA,while the maximum clock frequency is 178.28 MHz.
基金funded by Deanship of Scientific Research at King Khalid University under Grant Number R.G.P.2/86/43.
文摘The security of digital images transmitted via the Internet or other public media is of the utmost importance.Image encryption is a method of keeping an image secure while it travels across a non-secure communication medium where it could be intercepted by unauthorized entities.This study provides an approach to color image encryption that could find practical use in various contexts.The proposed method,which combines four chaotic systems,employs singular value decomposition and a chaotic sequence,making it both secure and compression-friendly.The unified average change intensity,the number of pixels’change rate,information entropy analysis,correlation coefficient analysis,compression friendliness,and security against brute force,statistical analysis and differential attacks are all used to evaluate the algorithm’s performance.Following a thorough investigation of the experimental data,it is concluded that the proposed image encryption approach is secure against a wide range of attacks and provides superior compression friendliness when compared to chaos-based alternatives.
文摘The advancements in technology have substantially grown the size of image data.Traditional image encryption algorithms have limited capabilities to deal with the emerging challenges in big data,including compression and noise toleration.An image encryption method that is based on chaotic maps and orthogonal matrix is proposed in this study.The proposed scheme is built on the intriguing characteristics of an orthogonal matrix.Gram Schmidt disperses the values of pixels in a plaintext image by generating a random orthogonal matrix using logistic chaotic map.Following the diffusion process,a block-wise random permutation of the data is performed using multi-chaos.The proposed scheme provides sufficient security and resilience to JPEG compression and channel noise through a series of experiments and security evaluations.It enables Partial Encryption(PE)for faster processing as well as complete encryption for increased security.The higher values of the number of pixels change rates and unified average change intensity confirm the security of the encryption scheme.In contrast to other schemes,the proposed approach can perform full and partial encryption depending on security requirements.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(RGP 2/180/43)Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R161)+1 种基金Princess Nourah bint Abdulrahman University,Riyadh,Saudi ArabiaThe authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4210118DSR07).
文摘Cyberattack detection has become an important research domain owing to increasing number of cybercrimes in recent years.Both Machine Learning(ML)and Deep Learning(DL)classification models are useful in effective identification and classification of cyberattacks.In addition,the involvement of hyper parameters in DL models has a significantly influence upon the overall performance of the classification models.In this background,the current study develops Intelligent Cybersecurity Classification using Chaos Game Optimization with Deep Learning(ICC-CGODL)Model.The goal of the proposed ICC-CGODL model is to recognize and categorize different kinds of attacks made upon data.Besides,ICC-CGODL model primarily performs min-max normalization process to normalize the data into uniform format.In addition,Bidirectional Gated Recurrent Unit(BiGRU)model is utilized for detection and classification of cyberattacks.Moreover,CGO algorithm is also exploited to adjust the hyper parameters involved in BiGRU model which is the novelty of current work.A wide-range of simulation analysis was conducted on benchmark dataset and the results obtained confirmed the significant performance of ICC-CGODL technique than the recent approaches.