The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to av...The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to avoid negative effects on the environment.Reclaimed water samples were collected bimonthly from May to November in 2010 in Chaobai River,and the physiochemical parameters were determined.The main results are as follows:The parameters exceeding the threshold value of the water guidelines are mainly nutrition related to nitrogen and phosphorus,which are known to increase the risk of eutrophication in surface waters.Additionally,nitrite and nitrate can be detrimental to human health.The majority of the parameters have a peaking concentration in May,whereas others either show significant temporal variation over the entire period or remain relatively constant in all four months.Correlation analysis shows that some parameters(pH,T and B) have no significant correlation with others,whereas significant positive correlation was found for Sr with EC and TDS,for CI with TDS,for Si02 with TP and for NO3-N with TN and a significant negative correlation between SO4 and Ba.According to principal component analysis,60.108%of the total data is represented by dominant solutes,and the second principal component with a percentage of 31.876 comprises parameters related to nitrogen.Subsequent cluster analysis of parameters identified four groups,which represent different compositions,and samples in May differ from others.展开更多
The Chaobai River Basin,which is a crucial ecological barrier and primary water source area within the Beijing-Tianjin-Hebei region,possesses substantial ecological significance.The gross ecosystem product(GEP)in the ...The Chaobai River Basin,which is a crucial ecological barrier and primary water source area within the Beijing-Tianjin-Hebei region,possesses substantial ecological significance.The gross ecosystem product(GEP)in the Chaobai River Basin is a reflection of ecosystem conditions and quantifies nature’s contributions to humanity,which provides a basis for basin ecosystem service management and decision-making.This study investigated the spatiotemporal evolution of GEP in the upper Chaobai River Basin and explored the driving factors influencing GEP spatial differentiation.Ecosystem patterns from 2005 to 2020 were analyzed,and GEP was calculated for 2005,2010,2015,and 2020.The driving factors influencing GEP spatial differentiation were identified using the optimal parameter-based geographical detector(OPGD)model.The key findings are as follows:(1)From 2005 to 2020,the main ecosystem types were forest,grassland,and agriculture.Urban areas experienced significant changes,and conversions mainly occurred among urban,water,grassland and agricultural ecosystems.(2)Temporally,the GEP in the basin increased from 2005 to 2020,with regulation services dominating.At the county(district)scale,GEP exhibited a north-west-high and south-east-low pattern,showing spatial differences between per-unit-area GEP and county(district)GEP,while the spatial variations in per capita GEP and county(district)GEP were similar.(3)Differences in the spatial distribution of GEP were influenced by regional natural geographical and socioeconomic factors.Among these factors,gross domestic product,population density,and land-use degree density contributed significantly.Interactions among different driving forces noticeably impacted GEP spatial differentiation.These findings underscore the necessity of incorporating factors such as population density and the intensity of land-use development into ecosystem management decision-making processes in the upper reaches of the Chaobai River Basin.Future policies should be devised to regulate human activities,thereby ensuring the stability and enhancement of GEP.展开更多
The carbon and nitrogen isotopes in the surface sediments,plants,and soil in the upper reaches of the Chaobai River have been researched.The results showed 27.75‰-21.58‰ and 1.32‰-6.74‰ for carbon and nitrogen iso...The carbon and nitrogen isotopes in the surface sediments,plants,and soil in the upper reaches of the Chaobai River have been researched.The results showed 27.75‰-21.58‰ and 1.32‰-6.74‰ for carbon and nitrogen isotopic ratios in the surface sediments,respectively.The sources of sedimentary organic matter in this area are soil organic matter,aquatic vascular plants,and riverine plankton,respectively,and a significant contributor to sediment in the Chaohe River,the Baihe River,and the Miyun Reservoir areas is soil organic matter.Furthermore,part of sedimentary organic matter in the Miyun Reservoir is attributed to the input from the Chaohe River and the Baihe River,the other is from C4 vegetation growing around individual point stations at the Miyun Reservoir.Compared with the situation in Hebei Province,the contribution of soil organic matter decreased significantly and river plankton and aquatic vascular plants increased significantly in Beijing municipal areas.This study reveals that the source of organic matter has a close relationship with the soil erosion.展开更多
To reveal the basic characteristics and controlling factors of water quality change in the project Wenyu to Chaobai reclaimed water diversion, the water quality in the study area was monitored for one year at seven mo...To reveal the basic characteristics and controlling factors of water quality change in the project Wenyu to Chaobai reclaimed water diversion, the water quality in the study area was monitored for one year at seven monitoring sites. Inverse geochemical models of the statistical groups were developed using PHREEQC to elucidate the hydrochemistry characteristics of reclaimed water and the factors. The monitoring results indicated that nitrogen and phosphorus contents were significantly reduced along the river mainly caused by seasonal and location variation. The pH ranged from 7.44 to 9.81. Photosynthesis of algae and denitrification in anaerobic microenvironment ultimately led to a sudden pH increase after the Jian River and the Chaobai River confluence. Mg2+ and SO^- levels dropped obviously in the summer and increased in winter seasons after intersection. Na+ and C1- are relatively stable, and marked drop in the concentration only after the two rivers meet. And there is a decrease of Ca2+ and HCO~ and increase in CO^- during monitoring period. As a whole, the primary ions and nutrient components, including nitrogen and phosphorus, had high levels in winter. Algae's photosynthesis and respiration were observed to have an impact on the river water quality; there was precipitation-dissolution of minerals and denitrification from upstream to downstream. Inverse geochemical PHREEQC modeling confirmed that there was precipitation of aragonite or calcite, and gypsum or anhydrite in summer, and dissolution in winter; as well as precipitation of dolomite in winter, and cationic exchange and denitrification along the river.展开更多
基金supported by the State Basic Research Development Program(973 Program)of China[no.2010CB428805]the Beijing Important Scientific and Technological Program[DO7050601510703]
文摘The utilization of reclaimed water could be an efficient tool to alleviate water scarcity,especially for dry river augmentation.However,it is crucial to monitor water quality to ensure safety to human health and to avoid negative effects on the environment.Reclaimed water samples were collected bimonthly from May to November in 2010 in Chaobai River,and the physiochemical parameters were determined.The main results are as follows:The parameters exceeding the threshold value of the water guidelines are mainly nutrition related to nitrogen and phosphorus,which are known to increase the risk of eutrophication in surface waters.Additionally,nitrite and nitrate can be detrimental to human health.The majority of the parameters have a peaking concentration in May,whereas others either show significant temporal variation over the entire period or remain relatively constant in all four months.Correlation analysis shows that some parameters(pH,T and B) have no significant correlation with others,whereas significant positive correlation was found for Sr with EC and TDS,for CI with TDS,for Si02 with TP and for NO3-N with TN and a significant negative correlation between SO4 and Ba.According to principal component analysis,60.108%of the total data is represented by dominant solutes,and the second principal component with a percentage of 31.876 comprises parameters related to nitrogen.Subsequent cluster analysis of parameters identified four groups,which represent different compositions,and samples in May differ from others.
基金the National Key Research and Development Program of China(No.2022YFF1301804)the Beijing Municipal Education Commission through the Innovative Transdisciplinary Program“Ecological Restoration Engineering”(No.GJJXK210102).
文摘The Chaobai River Basin,which is a crucial ecological barrier and primary water source area within the Beijing-Tianjin-Hebei region,possesses substantial ecological significance.The gross ecosystem product(GEP)in the Chaobai River Basin is a reflection of ecosystem conditions and quantifies nature’s contributions to humanity,which provides a basis for basin ecosystem service management and decision-making.This study investigated the spatiotemporal evolution of GEP in the upper Chaobai River Basin and explored the driving factors influencing GEP spatial differentiation.Ecosystem patterns from 2005 to 2020 were analyzed,and GEP was calculated for 2005,2010,2015,and 2020.The driving factors influencing GEP spatial differentiation were identified using the optimal parameter-based geographical detector(OPGD)model.The key findings are as follows:(1)From 2005 to 2020,the main ecosystem types were forest,grassland,and agriculture.Urban areas experienced significant changes,and conversions mainly occurred among urban,water,grassland and agricultural ecosystems.(2)Temporally,the GEP in the basin increased from 2005 to 2020,with regulation services dominating.At the county(district)scale,GEP exhibited a north-west-high and south-east-low pattern,showing spatial differences between per-unit-area GEP and county(district)GEP,while the spatial variations in per capita GEP and county(district)GEP were similar.(3)Differences in the spatial distribution of GEP were influenced by regional natural geographical and socioeconomic factors.Among these factors,gross domestic product,population density,and land-use degree density contributed significantly.Interactions among different driving forces noticeably impacted GEP spatial differentiation.These findings underscore the necessity of incorporating factors such as population density and the intensity of land-use development into ecosystem management decision-making processes in the upper reaches of the Chaobai River Basin.Future policies should be devised to regulate human activities,thereby ensuring the stability and enhancement of GEP.
基金supported by National Natural Science Foundation of China(Grant No. 41173113)the program of "One Hundred Talented People" of Chinese Academy of Sciences
文摘The carbon and nitrogen isotopes in the surface sediments,plants,and soil in the upper reaches of the Chaobai River have been researched.The results showed 27.75‰-21.58‰ and 1.32‰-6.74‰ for carbon and nitrogen isotopic ratios in the surface sediments,respectively.The sources of sedimentary organic matter in this area are soil organic matter,aquatic vascular plants,and riverine plankton,respectively,and a significant contributor to sediment in the Chaohe River,the Baihe River,and the Miyun Reservoir areas is soil organic matter.Furthermore,part of sedimentary organic matter in the Miyun Reservoir is attributed to the input from the Chaohe River and the Baihe River,the other is from C4 vegetation growing around individual point stations at the Miyun Reservoir.Compared with the situation in Hebei Province,the contribution of soil organic matter decreased significantly and river plankton and aquatic vascular plants increased significantly in Beijing municipal areas.This study reveals that the source of organic matter has a close relationship with the soil erosion.
基金supported by the Chinese National Environmental Protection Public Welfare Industry Targeted Research Fund (No. 201309001)the Fundamental Research Funds for the Central Universities (No. 53200859462)
文摘To reveal the basic characteristics and controlling factors of water quality change in the project Wenyu to Chaobai reclaimed water diversion, the water quality in the study area was monitored for one year at seven monitoring sites. Inverse geochemical models of the statistical groups were developed using PHREEQC to elucidate the hydrochemistry characteristics of reclaimed water and the factors. The monitoring results indicated that nitrogen and phosphorus contents were significantly reduced along the river mainly caused by seasonal and location variation. The pH ranged from 7.44 to 9.81. Photosynthesis of algae and denitrification in anaerobic microenvironment ultimately led to a sudden pH increase after the Jian River and the Chaobai River confluence. Mg2+ and SO^- levels dropped obviously in the summer and increased in winter seasons after intersection. Na+ and C1- are relatively stable, and marked drop in the concentration only after the two rivers meet. And there is a decrease of Ca2+ and HCO~ and increase in CO^- during monitoring period. As a whole, the primary ions and nutrient components, including nitrogen and phosphorus, had high levels in winter. Algae's photosynthesis and respiration were observed to have an impact on the river water quality; there was precipitation-dissolution of minerals and denitrification from upstream to downstream. Inverse geochemical PHREEQC modeling confirmed that there was precipitation of aragonite or calcite, and gypsum or anhydrite in summer, and dissolution in winter; as well as precipitation of dolomite in winter, and cationic exchange and denitrification along the river.