A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswi...A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswithout an explicit knowledge of the desired steady-state position.The well-known modified Hodgkin-Huxley (MHH)and Hindmarsh-Rose (HR) model neurons are taken as examples to verify the implementation of our method.Simulationresults show the proposed control law is effective.The outcome of this study is significant since it is helpful to understandthe learning process of a human brain towards the information processing,memory and abnormal discharge of the brainneurons.展开更多
This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different ...This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.展开更多
For the purpose of investigating two complex networks' hybrid synchronization,a controller with fractional-order is provided.Regarding hybrid synchronization which includes the outer synchronization and inner sync...For the purpose of investigating two complex networks' hybrid synchronization,a controller with fractional-order is provided.Regarding hybrid synchronization which includes the outer synchronization and inner synchronization,some hybrid synchronization's sufficient conditions according to the Lyapunov stability theorem and the LaSalle invariance principle are proposed.Theoretical analysis suggests that,only when the state of driving-response networks is outer synchronization and each network is in inner synchronization,two coupled networks' hybrid synchronization under some suitable conditions could be reached.Finally,theoretical results are illustrated and validated with the given numerical simulations.展开更多
This paper investigates distributed cooperative formation control of a group of multiple mobile agents with a virtual leader,where information exchange among agents is modeled by the group topology,and the states of t...This paper investigates distributed cooperative formation control of a group of multiple mobile agents with a virtual leader,where information exchange among agents is modeled by the group topology,and the states of the virtual leader are known only by parts of the agents.We develop a class of distributed formation control laws with similar form.The steered group is proved to achieve the desired formation objectives as long as the intersection of the initial communication topology and the formation goal topology is connected.This requirement of connectivity can be easily achieved by many practical applications;consequently,our developed distributed control laws are effective and feasible.Furthermore,for the developed control laws,we show the influence of different information flow graph of agents on the convergence rate and robustness to node and connection failures.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10862001 and 10947011the Construction of Key Laboratories in Universities of Guangxi under Grant No. 200912
文摘A new control law is proposed to asymptotically stabilize the chaotic neuron system based on LaSalleinvariant principle.The control technique does not require analytical knowledge of the system dynamics and operateswithout an explicit knowledge of the desired steady-state position.The well-known modified Hodgkin-Huxley (MHH)and Hindmarsh-Rose (HR) model neurons are taken as examples to verify the implementation of our method.Simulationresults show the proposed control law is effective.The outcome of this study is significant since it is helpful to understandthe learning process of a human brain towards the information processing,memory and abnormal discharge of the brainneurons.
基金Project supported by the National Natural Science Foundation of China (Grant No. 70571059)
文摘This paper investigates the cluster consensus problem for second-order multi-agent systems by applying the pinning control method to a small collection of the agents. Consensus is attained independently for different agent clusters according to the community structure generated by the group partition of the underlying graph and sufficient conditions for both cluster and general consensus are obtained by using results from algebraic graph theory and the LaSalle Invariance Principle. Finally, some simple simulations are presented to illustrate the technique.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61201227)the Funding of China Scholarship Council,the Natural Science Foundation of Anhui Province(Grant No.1208085MF93)the 211 Innovation Team of Anhui University(Grant Nos.KJTD007A and KJTD001B)
文摘For the purpose of investigating two complex networks' hybrid synchronization,a controller with fractional-order is provided.Regarding hybrid synchronization which includes the outer synchronization and inner synchronization,some hybrid synchronization's sufficient conditions according to the Lyapunov stability theorem and the LaSalle invariance principle are proposed.Theoretical analysis suggests that,only when the state of driving-response networks is outer synchronization and each network is in inner synchronization,two coupled networks' hybrid synchronization under some suitable conditions could be reached.Finally,theoretical results are illustrated and validated with the given numerical simulations.
基金supported by the National Natural Science Foundation of China (Grant No.60674041)the Specialized Research Fund for the Doctoral Program of Higher Education (No.20070248004).
文摘This paper investigates distributed cooperative formation control of a group of multiple mobile agents with a virtual leader,where information exchange among agents is modeled by the group topology,and the states of the virtual leader are known only by parts of the agents.We develop a class of distributed formation control laws with similar form.The steered group is proved to achieve the desired formation objectives as long as the intersection of the initial communication topology and the formation goal topology is connected.This requirement of connectivity can be easily achieved by many practical applications;consequently,our developed distributed control laws are effective and feasible.Furthermore,for the developed control laws,we show the influence of different information flow graph of agents on the convergence rate and robustness to node and connection failures.