A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In th...A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In the improved Oustaloup method, the turning frequency points are determined by the adaptive chaotic particle swarm optimization (PSO). The average velocity is proposed to reduce the iterations of the PSO. The chaotic search scheme is combined to reduce the opportunity of the premature phenomenon. Two fitness functions are given to minimize the zero-pole and amplitude-phase frequency errors for the underlying optimization problems. Some numerical examples are compared to demonstrate the effectiveness and accuracy of this proposed rational approximation method.展开更多
The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(M...The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.展开更多
Three-phase induction motors are becoming increasingly utilized in industrialfield due to their better efficiency and simple manufacture.The speed control of an induction motor is essential in a variety of applications,...Three-phase induction motors are becoming increasingly utilized in industrialfield due to their better efficiency and simple manufacture.The speed control of an induction motor is essential in a variety of applications,but it is dif-ficult to control.This research analyses the three-phase induction motor’s perfor-mance usingfield-oriented control(FOC)and direct torque control(DTC)techniques.The major aim of this work is to provide a critical evaluation of devel-oping a simple speed controller for induction motors with improving the perfor-mance of Induction Motor(IM).For controlling a motor,different optimization approaches are accessible;in this research,a Fuzzy Logic Controller(FLC)with Fractional Order Darwinian Particle Swarm Optimization(FODPSO)algorithm is presented to control the induction motor.The FOC and DTC are controlled using FODPSO,and their performance is compared to the traditional FOC and DTC technique.Each scheme had its own simulation model,and the results were com-pared using hardware experimental and MATLAB-Simulink.In terms of time domain specifications and torque improvement,the proposed technique surpasses the existing method.展开更多
基金supported by the National Natural Science Foundation of China (10872030)
文摘A rational approximation method of the fractional-order derivative and integral operators is proposed. The turning fre- quency points are fixed in each frequency interval in the standard Oustaloup approximation. In the improved Oustaloup method, the turning frequency points are determined by the adaptive chaotic particle swarm optimization (PSO). The average velocity is proposed to reduce the iterations of the PSO. The chaotic search scheme is combined to reduce the opportunity of the premature phenomenon. Two fitness functions are given to minimize the zero-pole and amplitude-phase frequency errors for the underlying optimization problems. Some numerical examples are compared to demonstrate the effectiveness and accuracy of this proposed rational approximation method.
基金supported by the Board of Research in Nuclear Sciences of the Department of Atomic Energy,India(2012/36/69-BRNS/2012)
文摘The aim of this paper is to employ fractional order proportional integral derivative(FO-PID)controller and integer order PID controller to control the position of the levitated object in a magnetic levitation system(MLS),which is inherently nonlinear and unstable system.The proposal is to deploy discrete optimal pole-zero approximation method for realization of digital fractional order controller.An approach of phase shaping by slope cancellation of asymptotic phase plots for zeros and poles within given bandwidth is explored.The controller parameters are tuned using dynamic particle swarm optimization(d PSO)technique.Effectiveness of the proposed control scheme is verified by simulation and experimental results.The performance of realized digital FO-PID controller has been compared with that of the integer order PID controllers.It is observed that effort required in fractional order control is smaller as compared with its integer counterpart for obtaining the same system performance.
基金Supported by National Natural Science Foundation of China (61273260), Specialized Research Fund for the Doctoral Program of Higher Education of China (20121333120010), Natural Scientific Research Foundation of the Higher Education Institutions of Hebei Province (2010t65), the Major Program of the National Natural Science Foundation of China (61290322), Foundation of Key Labora- tory of System Control and Information Processing, Ministry of Education (SCIP2012008), and Science and Technology Research and Development Plan of Qinhuangdao City (2012021A041)
文摘Three-phase induction motors are becoming increasingly utilized in industrialfield due to their better efficiency and simple manufacture.The speed control of an induction motor is essential in a variety of applications,but it is dif-ficult to control.This research analyses the three-phase induction motor’s perfor-mance usingfield-oriented control(FOC)and direct torque control(DTC)techniques.The major aim of this work is to provide a critical evaluation of devel-oping a simple speed controller for induction motors with improving the perfor-mance of Induction Motor(IM).For controlling a motor,different optimization approaches are accessible;in this research,a Fuzzy Logic Controller(FLC)with Fractional Order Darwinian Particle Swarm Optimization(FODPSO)algorithm is presented to control the induction motor.The FOC and DTC are controlled using FODPSO,and their performance is compared to the traditional FOC and DTC technique.Each scheme had its own simulation model,and the results were com-pared using hardware experimental and MATLAB-Simulink.In terms of time domain specifications and torque improvement,the proposed technique surpasses the existing method.