The deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous prematurity and its inability to seek the global optimal solution when optimizing complex high-dimensional functions. To overcome such ...The deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous prematurity and its inability to seek the global optimal solution when optimizing complex high-dimensional functions. To overcome such deficiencies, the chaos-PSO (COSPSO) algorithm was established by introducing the chaos optimization mechanism and a global particle stagnation-disturbance strategy into bPSO. In the improved algorithm, chaotic movement was adopted for the particles' initial movement trajectories to replace the former stochastic movement, and the chaos factor was used to guide the particles' path. When the global particles were stagnant, the disturbance strategy was used to keep the particles in motion. Five benchmark optimizations were introduced to test COSPSO, and they proved that COSPSO can remarkably improve efficiency in optimizing complex functions. Finally, a case study of COSPSO in calculating design flood hydrographs demonstrated the applicability of the improved algorithm.展开更多
The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial perform...The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.展开更多
Path planning algorithm is the key point to UAV path planning scenario.Many traditional path planning methods still suffer from low convergence rate and insufficient robustness.In this paper,three main methods are con...Path planning algorithm is the key point to UAV path planning scenario.Many traditional path planning methods still suffer from low convergence rate and insufficient robustness.In this paper,three main methods are contributed to solving these problems.First,the improved artificial potential field(APF)method is adopted to accelerate the convergence process of the bat’s position update.Second,the optimal success rate strategy is proposed to improve the adaptive inertia weight of bat algorithm.Third chaos strategy is proposed to avoid falling into a local optimum.Compared with standard APF and chaos strategy in UAV path planning scenarios,the improved algorithm CPFIBA(The improved artificial potential field method combined with chaotic bat algorithm,CPFIBA)significantly increases the success rate of finding suitable planning path and decrease the convergence time.Simulation results show that the proposed algorithm also has great robustness for processing with path planning problems.Meanwhile,it overcomes the shortcomings of the traditional meta-heuristic algorithms,as their convergence process is the potential to fall into a local optimum.From the simulation,we can see also obverse that the proposed CPFIBA provides better performance than BA and DEBA in problems of UAV path planning.展开更多
基金supported by the National Basic Research Program of China (973 Program) (Grant No.2006CB403402)
文摘The deficiencies of basic particle swarm optimization (bPSO) are its ubiquitous prematurity and its inability to seek the global optimal solution when optimizing complex high-dimensional functions. To overcome such deficiencies, the chaos-PSO (COSPSO) algorithm was established by introducing the chaos optimization mechanism and a global particle stagnation-disturbance strategy into bPSO. In the improved algorithm, chaotic movement was adopted for the particles' initial movement trajectories to replace the former stochastic movement, and the chaos factor was used to guide the particles' path. When the global particles were stagnant, the disturbance strategy was used to keep the particles in motion. Five benchmark optimizations were introduced to test COSPSO, and they proved that COSPSO can remarkably improve efficiency in optimizing complex functions. Finally, a case study of COSPSO in calculating design flood hydrographs demonstrated the applicability of the improved algorithm.
基金supported in part by the National Natural Science Foundation of China(J2124006,62076185)。
文摘The Swarm intelligence algorithm is a very prevalent field in which some scholars have made outstanding achievements.As a representative,Slime mould algorithm(SMA)is widely used because of its superior initial performance.Therefore,this paper focuses on the improvement of the SMA and the mitigation of its stagnation problems.For this aim,the structure of SMA is adjusted to develop the efficiency of the original method.As a stochastic optimizer,SMA mainly stimulates the behavior of slime mold in nature.For the harmony of the exploration and exploitation of SMA,the paper proposed an enhanced algorithm of SMA called ECSMA,in which two mechanisms are embedded into the structure:elite strategy,and chaotic stochastic strategy.The details of the original SMA and the two introduced strategies are given in this paper.Then,the advantages of the improved SMA through mechanism comparison,balance-diversity analysis,and contrasts with other counterparts are validated.The experimental results demonstrate that both mechanisms have a significant enhancing effect on SMA.Also,SMA is applied to four structural design issues of the welded beam design problem,PV design problem,I-beam design problem,and cantilever beam design problem with excellent results.
基金This project is supported by National Science Foundation for Young Scientists of China(61701322)the Key Projects of Liaoning Natural Science Foundation(20170540700)+3 种基金the Key Projects of Liaoning Provincial Department of Education Science Foundation(L201702)Liaoning Natural Science Foundation(201502008,20102175)the Program for Liaoning Excellent Talents in University(LJQ2012011)the Liaoning Provincial Department of Education Science Foundation(L201630).
文摘Path planning algorithm is the key point to UAV path planning scenario.Many traditional path planning methods still suffer from low convergence rate and insufficient robustness.In this paper,three main methods are contributed to solving these problems.First,the improved artificial potential field(APF)method is adopted to accelerate the convergence process of the bat’s position update.Second,the optimal success rate strategy is proposed to improve the adaptive inertia weight of bat algorithm.Third chaos strategy is proposed to avoid falling into a local optimum.Compared with standard APF and chaos strategy in UAV path planning scenarios,the improved algorithm CPFIBA(The improved artificial potential field method combined with chaotic bat algorithm,CPFIBA)significantly increases the success rate of finding suitable planning path and decrease the convergence time.Simulation results show that the proposed algorithm also has great robustness for processing with path planning problems.Meanwhile,it overcomes the shortcomings of the traditional meta-heuristic algorithms,as their convergence process is the potential to fall into a local optimum.From the simulation,we can see also obverse that the proposed CPFIBA provides better performance than BA and DEBA in problems of UAV path planning.