Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit feature...Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method.展开更多
The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the ...The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.展开更多
The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the ...The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the diagnostic results being sensitive to the specific values and random noise. This paper presents a data-driven fault diagnosis method for analog circuits based on the robust competitive agglomeration (RCA), which can alleviate the incompleteness of the data by clustering with the competing process. And the robustness of the diagnostic results is enhanced by using the approach of robust statistics in RCA. A series of experiments are provided to demonstrate that RCA can classify the incomplete data with a high accuracy. The experimental results show that RCA is robust for the data needed to be classified as well as the parameters needed to be adjusted. The effectiveness of RCA in practical use is demonstrated by two analog circuits.展开更多
Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of...Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.展开更多
The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnos...The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnosis in analog circuits is presented in this paper.The proposed method extracts the original signals from the output terminals of the circuits under test(CUT) by a data acquisition board.Firstly,the phase deviation value between fault-free and faulty conditions is obtained by fitting the sampling sequence with a sine curve.Secondly,the sampling sequence is organized into a square matrix and the spectral radius of this matrix is obtained.Thirdly,the smallest error of the spectral radius and the corresponding component value are obtained through comparing the spectral radius and phase deviation value with the trend curves of them,respectively,which are calculated from the simulation data.Finally,the fault location is completed by using the smallest error,and the corresponding component value is the parameter identification result.Both simulated and experimental results show the effectiveness of the proposed approach.It is particularly suitable for the fault location and parameter identification for analog integrated circuits.展开更多
In this paper, it is proved that the direction of the node-voltage difference vector, which is the difference between the node-voltage vector at faulty state and the one at the nominal state, is determined only by the...In this paper, it is proved that the direction of the node-voltage difference vector, which is the difference between the node-voltage vector at faulty state and the one at the nominal state, is determined only by the location of the faulty clement in linear analog circuits. Considering that the direction of the node-voltage sensitivity vector is the same as the one of the node-voltage difference vector and also considering that the module of the node-voltage sensitivity vector presents the weight of the parameter of faulty element deviation relative to the voltage difference, fault dictionary is set up based on node-voltage sensitivity vectors. A decision algorithm is proposed concerned with both the location and the parameter difference of the faulty element. Single fault and multi-fault can be diagnosed while the circuit parameters deviate within the tolerance range of 10 %.展开更多
A method for robust analog fault diagnosis using hybrid neural networks is proposed. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of element tolerances and r...A method for robust analog fault diagnosis using hybrid neural networks is proposed. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of element tolerances and reduce testing time. The proposed approach is based on the fault dictionary diagnosis method and backward propagation neural network (BPNN) and the adaptive resonance theory (ART) neural network. Simulation results show that the method is robust and fast for fault diagnosis of analog circuits with tolerances.展开更多
In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural...In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural network.The model can not only overcome the limitations of the slow convergence and the local extreme values by basic BP algorithm,but also improve the learning ability and generalization ability with a higher precision.The response signals of analog circuit is preprocessed by Wavelet Packet Transform(WPT)as the fault feature.The simulation result shows that the proposed method has higher diagnostic accuracy and faster convergence speed,which is effective for fault location.展开更多
A single soft fault diagnosis method for analog circuit with tolerance based on particle swarm optimization (PSO) is proposed. The parameter deviation of circuit elements is defined as the element of particle. Node-...A single soft fault diagnosis method for analog circuit with tolerance based on particle swarm optimization (PSO) is proposed. The parameter deviation of circuit elements is defined as the element of particle. Node-voltage incremental equations based on the sensitivity analysis are built as constraints of a linear programming (LP) equation. Through inducing the penalty coefficient, the LP equation is set as the fitness function for the PSO program. After evaluating the best position of particles, the position of the optimal particle states whether the actual parameter is within tolerance range or not. Simulation result shows the effectiveness of the method.展开更多
Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog c...Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog circuits and in diagnoses the ARNIC 429 reception circuit of aviation aircraft avionics. The C cluster algorithm can make the amount of the fuzzy rule automatically and can create an initial fuzzy rule database of fault diagnosis. A type of fuzzy neural network and a fault tree were generated. The algorithm avoids the disadvantage that gets into the part of optimum circumstance. A validate application was implemented, which proves that the method is effective. Therefore, the method is superior to the traditional methods in fault diagnosis, and the efficiency is heavily improved.展开更多
In view of K-fault testability,the topological construction of a practical circuitis far from ideal.In order to improve the testability of a circuit,we may increase the numberof accessible nodes or use the multi-excit...In view of K-fault testability,the topological construction of a practical circuitis far from ideal.In order to improve the testability of a circuit,we may increase the numberof accessible nodes or use the multi-excitation method.Effectiveness of these methods and thefeasibility of choosing accessible nodes are discussed in detail.The conditions for multi-excitationtestability are presented.展开更多
This paper describes why the k-dimension maximal oriented energy subspace of the measurable voltage-change matrix id the optimal feature to locate faults in a population of circuits. The paper elaborately designs a &q...This paper describes why the k-dimension maximal oriented energy subspace of the measurable voltage-change matrix id the optimal feature to locate faults in a population of circuits. The paper elaborately designs a "nearness" concept, which is used to construct a fault candidate set in a small size, and proposes a maximal nearness criterion. On the basis of these, the paper presents a novel algorithm to efficiently improve the accuracy and speed of fault locating.展开更多
Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault...Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault feature and back propagation neural networks (BPNN). The reported approach uses the voltage relation function between two nodes as fault features; and for linear analog circuits, the voltage relation function is a linear function, thus the slope is invariant as fault feature. Therefore, a unified fault feature for both hard fault (open or short fault) and soft fault (parametric fault) is extracted. Unlike other NN-based diagnosis methods which utilize node voltages or frequency response as fault features, the reported BPNN is trained by the extracted feature vectors, the slope features are calculated by just simulating once for each component, and the trained BPNN can achieve all the soft faults diagnosis of the component. Experiments show that our approach is promising.展开更多
This paper presents a neural network based fault diagnosis approach for analog circuits, taking the tolerances of circuit elements into account. Specifi-cally, a normalization rule of input information, a pseudo-fault...This paper presents a neural network based fault diagnosis approach for analog circuits, taking the tolerances of circuit elements into account. Specifi-cally, a normalization rule of input information, a pseudo-fault domain border (PFDB) pattern selection method and a new output error function are proposed for training the backpropagation (BP) network to be a fault diagnoser. Experi-mental results demonstrate that the diagnoser performs as well as or better than any classical approaches in terms of accuracy, and provides at Ieast an order-of magnitude improvement in post-fault diagnostic speed.展开更多
A novel hierarchical neural networks (HNNs) method for fault diagnosis of large-scale circuits is proposed. The presented techniques using neural networks(NNs) approaches require a large amount of computation for simu...A novel hierarchical neural networks (HNNs) method for fault diagnosis of large-scale circuits is proposed. The presented techniques using neural networks(NNs) approaches require a large amount of computation for simulating various faulty component possibilities. For large scale circuits, the number of possible faults, and hence the simulations, grow rapidly and become tedious and sometimes even impractical. Some NNs are distributed to the torn sub-blocks according to the proposed torn principles of large scale circuits. And the NNs are trained in batches by different patterns in the light of the presented rules of various patterns when the DC, AC and transient responses of the circuit are available. The method is characterized by decreasing the over-lapped feasible domains of responses of circuits with tolerance and leads to better performance and higher correct classification. The methodology is illustrated by means of diagnosis examples.展开更多
Aiming at the problem of diagnosing soft faults in analog integrated circuits, an approach based on fractional correlation is proposed. First, the Volterra series of the circuit under test (CUT) decomposed by the fr...Aiming at the problem of diagnosing soft faults in analog integrated circuits, an approach based on fractional correlation is proposed. First, the Volterra series of the circuit under test (CUT) decomposed by the fractional wavelet packet are used to calculate the fractional correlation functions. Then, the calculated fractional correlation functions are used to form the fault signatures of the CUT. By comparing the fault signatures, the different soft faulty conditions of the CUT are identified and the faults are located. Simulations of benchmark circuits illustrate the proposed method and validate its effectiveness in diagnosing soft faults in analog integrated circuits.展开更多
基金the National Natural Science Fundation of China (60372001 90407007)the Ph. D. Programs Foundation of Ministry of Education of China (20030614006).
文摘Choosing the right characteristic parameter is the key to fault diagnosis in analog circuit. The feature evaluation and extraction methods based on neural network are presented. Parameter evaluation of circuit features is realized by training results from neural network; the superior nonlinear mapping capability is competent for extracting fault features which are normalized and compressed subsequently. The complex classification problem on fault pattern recognition in analog circuit is transferred into feature processing stage by feature extraction based on neural network effectively, which improves the diagnosis efficiency. A fault diagnosis illustration validated this method.
基金This project was supported by the National Nature Science Foundation of China(60372001)
文摘The theories of diagnosing nonlinear analog circuits by means of the transient response testing are studled. Wavelet analysis is made to extract the transient response signature of nonlinear circuits and compress the signature dada. The best wavelet function is selected based on the between-category total scatter of signature. The fault dictionary of nonlinear circuits is constructed based on improved back-propagation(BP) neural network. Experimental results demonstrate that the method proposed has high diagnostic sensitivity and fast fault identification and deducibility.
基金supported by the National Natural Science Foundation of China (61202078 61071139)the National High Technology Research and Development Program of China (863 Program)(SQ2011AA110101)
文摘The data-driven fault diagnosis methods can improve the reliability of analog circuits by using the data generated from it. The data have some characteristics, such as randomness and incompleteness, which lead to the diagnostic results being sensitive to the specific values and random noise. This paper presents a data-driven fault diagnosis method for analog circuits based on the robust competitive agglomeration (RCA), which can alleviate the incompleteness of the data by clustering with the competing process. And the robustness of the diagnostic results is enhanced by using the approach of robust statistics in RCA. A series of experiments are provided to demonstrate that RCA can classify the incomplete data with a high accuracy. The experimental results show that RCA is robust for the data needed to be classified as well as the parameters needed to be adjusted. The effectiveness of RCA in practical use is demonstrated by two analog circuits.
基金National Natural Science Foundation of China(No.61371024)Aviation Science Fund of China(No.2013ZD53051)+2 种基金Aerospace Technology Support Fund of Chinathe Industry-Academy-Research Project of AVIC,China(No.cxy2013XGD14)the Open Research Project of Guangdong Key Laboratory of Popular High Performance Computers/Shenzhen Key Laboratory of Service Computing and Applications,China
文摘Electronic components' reliability has become the key of the complex system mission execution. Analog circuit is an important part of electronic components. Its fault diagnosis is far more challenging than that of digital circuit. Simulations and applications have shown that the methods based on BP neural network are effective in analog circuit fault diagnosis. Aiming at the tolerance of analog circuit,a combinatorial optimization diagnosis scheme was proposed with back propagation( BP) neural network( BPNN).The main contributions of this scheme included two parts:( 1) the random tolerance samples were added into the nominal training samples to establish new training samples,which were used to train the BP neural network based diagnosis model;( 2) the initial weights of the BP neural network were optimized by genetic algorithm( GA) to avoid local minima,and the BP neural network was tuned with Levenberg-Marquardt algorithm( LMA) in the local solution space to look for the optimum solution or approximate optimal solutions. The experimental results show preliminarily that the scheme substantially improves the whole learning process approximation and generalization ability,and effectively promotes analog circuit fault diagnosis performance based on BPNN.
基金supported by the National Natural Science Foundation of China under Grant No.61371049
文摘The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnosis in analog circuits is presented in this paper.The proposed method extracts the original signals from the output terminals of the circuits under test(CUT) by a data acquisition board.Firstly,the phase deviation value between fault-free and faulty conditions is obtained by fitting the sampling sequence with a sine curve.Secondly,the sampling sequence is organized into a square matrix and the spectral radius of this matrix is obtained.Thirdly,the smallest error of the spectral radius and the corresponding component value are obtained through comparing the spectral radius and phase deviation value with the trend curves of them,respectively,which are calculated from the simulation data.Finally,the fault location is completed by using the smallest error,and the corresponding component value is the parameter identification result.Both simulated and experimental results show the effectiveness of the proposed approach.It is particularly suitable for the fault location and parameter identification for analog integrated circuits.
基金supported by Program for New Century Excellent Talents in University under Grant No.NCET-05-0804
文摘In this paper, it is proved that the direction of the node-voltage difference vector, which is the difference between the node-voltage vector at faulty state and the one at the nominal state, is determined only by the location of the faulty clement in linear analog circuits. Considering that the direction of the node-voltage sensitivity vector is the same as the one of the node-voltage difference vector and also considering that the module of the node-voltage sensitivity vector presents the weight of the parameter of faulty element deviation relative to the voltage difference, fault dictionary is set up based on node-voltage sensitivity vectors. A decision algorithm is proposed concerned with both the location and the parameter difference of the faulty element. Single fault and multi-fault can be diagnosed while the circuit parameters deviate within the tolerance range of 10 %.
文摘A method for robust analog fault diagnosis using hybrid neural networks is proposed. The primary focus of the paper is to provide robust diagnosis using a mechanism to deal with the problem of element tolerances and reduce testing time. The proposed approach is based on the fault dictionary diagnosis method and backward propagation neural network (BPNN) and the adaptive resonance theory (ART) neural network. Simulation results show that the method is robust and fast for fault diagnosis of analog circuits with tolerances.
基金supported the Science and Technology Research Project of Liaoning Provincial Department of Education
文摘In order to improve the speed and accuracy of analog circuit fault diagnosis,using Back Propagation Neural Network(BPNN),a new method is proposed based on Particle Swarm Optimization(PSO)to adjust weights of BP neural network.The model can not only overcome the limitations of the slow convergence and the local extreme values by basic BP algorithm,but also improve the learning ability and generalization ability with a higher precision.The response signals of analog circuit is preprocessed by Wavelet Packet Transform(WPT)as the fault feature.The simulation result shows that the proposed method has higher diagnostic accuracy and faster convergence speed,which is effective for fault location.
基金supported by the Program for New Century Excellent Talents in University under Grant No.NCET-05-0804partly supported by Chinese National Programs for High Technology Research and Development under Grant No.2006AA06Z222
文摘A single soft fault diagnosis method for analog circuit with tolerance based on particle swarm optimization (PSO) is proposed. The parameter deviation of circuit elements is defined as the element of particle. Node-voltage incremental equations based on the sensitivity analysis are built as constraints of a linear programming (LP) equation. Through inducing the penalty coefficient, the LP equation is set as the fitness function for the PSO program. After evaluating the best position of particles, the position of the optimal particle states whether the actual parameter is within tolerance range or not. Simulation result shows the effectiveness of the method.
基金Project (MHRD0705) supported by the Science Foundation by Civil Aviation Administrator of ChinaProject (07ZCKFGX01500) supported by Tianjin Science Foundation and Technology Key Project
文摘Using fuzzy C cluster mean (FCM), fuzzy theory and neural network, a fault diagnosis method was proposed, which was based on fuzzy C-means clustering algorithm of neural network that was applied in non-linear analog circuits and in diagnoses the ARNIC 429 reception circuit of aviation aircraft avionics. The C cluster algorithm can make the amount of the fuzzy rule automatically and can create an initial fuzzy rule database of fault diagnosis. A type of fuzzy neural network and a fault tree were generated. The algorithm avoids the disadvantage that gets into the part of optimum circumstance. A validate application was implemented, which proves that the method is effective. Therefore, the method is superior to the traditional methods in fault diagnosis, and the efficiency is heavily improved.
基金The work was supported by National Science Foundation of China.
文摘In view of K-fault testability,the topological construction of a practical circuitis far from ideal.In order to improve the testability of a circuit,we may increase the numberof accessible nodes or use the multi-excitation method.Effectiveness of these methods and thefeasibility of choosing accessible nodes are discussed in detail.The conditions for multi-excitationtestability are presented.
文摘This paper describes why the k-dimension maximal oriented energy subspace of the measurable voltage-change matrix id the optimal feature to locate faults in a population of circuits. The paper elaborately designs a "nearness" concept, which is used to construct a fault candidate set in a small size, and proposes a maximal nearness criterion. On the basis of these, the paper presents a novel algorithm to efficiently improve the accuracy and speed of fault locating.
基金the National Basic Research and Development (973) Program of China (No.2005cb321604)the National Natural Science Foundation of China (No. 60633060)
文摘Fault diagnosis is very important for development and maintenance of safe and reliable electronic circuits and systems. This paper describes an approach of soft fault diagnosis for analog circuits based on slope fault feature and back propagation neural networks (BPNN). The reported approach uses the voltage relation function between two nodes as fault features; and for linear analog circuits, the voltage relation function is a linear function, thus the slope is invariant as fault feature. Therefore, a unified fault feature for both hard fault (open or short fault) and soft fault (parametric fault) is extracted. Unlike other NN-based diagnosis methods which utilize node voltages or frequency response as fault features, the reported BPNN is trained by the extracted feature vectors, the slope features are calculated by just simulating once for each component, and the trained BPNN can achieve all the soft faults diagnosis of the component. Experiments show that our approach is promising.
文摘This paper presents a neural network based fault diagnosis approach for analog circuits, taking the tolerances of circuit elements into account. Specifi-cally, a normalization rule of input information, a pseudo-fault domain border (PFDB) pattern selection method and a new output error function are proposed for training the backpropagation (BP) network to be a fault diagnoser. Experi-mental results demonstrate that the diagnoser performs as well as or better than any classical approaches in terms of accuracy, and provides at Ieast an order-of magnitude improvement in post-fault diagnostic speed.
基金the Natural Science Foundation of China (No50677014)Doctoral Special Fund of China Ministry of Education, (No. 20060532002)+2 种基金the Program for New Century ExcellenTalents in University (No. NCET-04-0767)Foundation of Hunan Province Science & Technology (Nos. 06JJ2024, 03GKY3115,04FJ2003,05GK2005)the National High-Tech Research and Development (863) Program of China.
文摘A novel hierarchical neural networks (HNNs) method for fault diagnosis of large-scale circuits is proposed. The presented techniques using neural networks(NNs) approaches require a large amount of computation for simulating various faulty component possibilities. For large scale circuits, the number of possible faults, and hence the simulations, grow rapidly and become tedious and sometimes even impractical. Some NNs are distributed to the torn sub-blocks according to the proposed torn principles of large scale circuits. And the NNs are trained in batches by different patterns in the light of the presented rules of various patterns when the DC, AC and transient responses of the circuit are available. The method is characterized by decreasing the over-lapped feasible domains of responses of circuits with tolerance and leads to better performance and higher correct classification. The methodology is illustrated by means of diagnosis examples.
基金Project supported by the Program for New Century Excellent Talents in University,China(No.NCET-05-0804)the Chinese National Programs for High Technology Research and Development(No.2006AA06Z222)
文摘Aiming at the problem of diagnosing soft faults in analog integrated circuits, an approach based on fractional correlation is proposed. First, the Volterra series of the circuit under test (CUT) decomposed by the fractional wavelet packet are used to calculate the fractional correlation functions. Then, the calculated fractional correlation functions are used to form the fault signatures of the CUT. By comparing the fault signatures, the different soft faulty conditions of the CUT are identified and the faults are located. Simulations of benchmark circuits illustrate the proposed method and validate its effectiveness in diagnosing soft faults in analog integrated circuits.