Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti...In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems.展开更多
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red...Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.展开更多
In this work,we propose a real proportional-integral-derivative plus second-order derivative(PIDD2)controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to ...In this work,we propose a real proportional-integral-derivative plus second-order derivative(PIDD2)controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to efficient operation.In this regard,this paper is the first report in the literature demonstrating the implementation of a real PIDD2 controller for controlling the respective system.We construct a novel and efficient metaheuristic algorithm by improving the performance of the Aquila Optimizer via chaotic local search and modified opposition-based learning strategies and use it as an excellently performing tuning mechanism.We also propose a simple yet effective objective function to increase the performance of the proposed algorithm(CmOBL-AO)to adjust the real PIDD2 controller's parameters effectively.We show the CmOBL-AO algorithm to perform better than the differential evolution algorithm,gravitational search algorithm,African vultures optimization,and the Aquila Optimizer using well-known unimodal,multimodal benchmark functions.CEC2019 test suite is also used to perform ablation experiments to reveal the separate contributions of chaotic local search and modified opposition-based learning strategies to the CmOBL-AO algorithm.For the vehicle cruise control system,we confirm the more excellent performance of the proposed method against particle swarm,gray wolf,salp swarm,and original Aquila optimizers using statistical,Wilcoxon signed-rank,time response,robustness,and disturbance rejection analyses.We also use fourteen reported methods in the literature for the vehicle cruise control system to further verify the more promising performance of the CmOBL-AO-based real PIDD2 controller from a wider perspective.The excellent performance of the proposed method is also illustrated through different quality indicators and different operating speeds.Lastly,we also demonstrate the good performing capability of the CmOBL-AO algorithm for real traffic cases.We show the CmOBL-AO-based real PIDD2 controller as the most efficient method to control a vehicle cruise control system.展开更多
Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many r...Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum.展开更多
Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order ...Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.展开更多
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金Project(20040533035)supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(60874070)supported by the National Natural Science Foundation of China
文摘In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.
文摘In this work,we propose a real proportional-integral-derivative plus second-order derivative(PIDD2)controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to efficient operation.In this regard,this paper is the first report in the literature demonstrating the implementation of a real PIDD2 controller for controlling the respective system.We construct a novel and efficient metaheuristic algorithm by improving the performance of the Aquila Optimizer via chaotic local search and modified opposition-based learning strategies and use it as an excellently performing tuning mechanism.We also propose a simple yet effective objective function to increase the performance of the proposed algorithm(CmOBL-AO)to adjust the real PIDD2 controller's parameters effectively.We show the CmOBL-AO algorithm to perform better than the differential evolution algorithm,gravitational search algorithm,African vultures optimization,and the Aquila Optimizer using well-known unimodal,multimodal benchmark functions.CEC2019 test suite is also used to perform ablation experiments to reveal the separate contributions of chaotic local search and modified opposition-based learning strategies to the CmOBL-AO algorithm.For the vehicle cruise control system,we confirm the more excellent performance of the proposed method against particle swarm,gray wolf,salp swarm,and original Aquila optimizers using statistical,Wilcoxon signed-rank,time response,robustness,and disturbance rejection analyses.We also use fourteen reported methods in the literature for the vehicle cruise control system to further verify the more promising performance of the CmOBL-AO-based real PIDD2 controller from a wider perspective.The excellent performance of the proposed method is also illustrated through different quality indicators and different operating speeds.Lastly,we also demonstrate the good performing capability of the CmOBL-AO algorithm for real traffic cases.We show the CmOBL-AO-based real PIDD2 controller as the most efficient method to control a vehicle cruise control system.
文摘Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172333&11272361)the Guangdong Province Natural Science Foundation(Grant No.2015A030313126)the Guangdong Province Science and Technology Program(Grant Nos.2014A020218004&2016A020223006)
文摘Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.