This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China.In the process of...This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China.In the process of determining the structure of the chaotic neural network,the number of input layer nodes of the network is calculated by reconstructing phase space and computing its saturated embedding dimension,and then the number of hidden layer nodes is estimated by trial and error.Finally,this model is applied to predict the retail prices of eggs and compared with ARIMA.The result shows that the chaotic neural network has better nonlinear fitting ability and higher precision in the prediction of weekly retail price of eggs.The empirical result also shows that the chaotic neural network can be widely used in the field of short-term prediction of agricultural prices.展开更多
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (...In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hard- ware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosys- tem is secure and practical, and suitable for image encryption.展开更多
In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By co...In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By constructing a suitable Lyapunov–Krasovskii functional and using a reciprocally convex approach, a novel H∞ synchronization criterion for the networks concerned is established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.展开更多
In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled...In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled neural networks, the key idea is that a sliding-mode-type controller is employed. Moreover, without the estimate values of the network unknown parameters taken as an updating object, a new updating object is introduced in the constructing of controller. Using the proposed controller, without any requirements for the boundedness, monotonicity and differentiability of activation functions, and symmetry of connections, the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are. Finally, the numerical simulation validates the effectiveness and feasibility of the proposed technique.展开更多
In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield n...In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.展开更多
High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation appr...High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.展开更多
It was theoretically proved that one-dimensional transiently chaotic neural networks have chaotic structure in sense of Li-Yorke theorem with some given assumptions using that no division implies chaos. In particular,...It was theoretically proved that one-dimensional transiently chaotic neural networks have chaotic structure in sense of Li-Yorke theorem with some given assumptions using that no division implies chaos. In particular, it is further derived sufficient conditions for the existence of chaos in sense of Li- Yorke theorem in chaotic neural network, which leads to the fact that Aihara has demonstrated by numerical method. Finally, an example and numerical simulation are shown to illustrate and reinforce the previous theory.展开更多
This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural ...This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.展开更多
In wireless body sensor network(WBSN),the set of electrocardiogram(ECG)data which is collected from sensor nodes and transmitted to the server remotely supports the experts to monitor the health of a patient.While tra...In wireless body sensor network(WBSN),the set of electrocardiogram(ECG)data which is collected from sensor nodes and transmitted to the server remotely supports the experts to monitor the health of a patient.While transmit-ting these collected data some adversaries may capture and misuse it due to the compromise of security.So,the major aim of this work is to enhance secure trans-mission of ECG signal in WBSN.To attain this goal,we present Pity Beetle Swarm Optimization Algorithm(PBOA)based Elliptic Galois Cryptography(EGC)with Chaotic Neural Network.To optimize the key generation process in Elliptic Curve Cryptography(ECC)over Galoisfield or EGC,private key is chosen optimally using PBOA algorithm.Then the encryption process is enhanced by presenting chaotic neural network which is used to generate chaotic sequences or cipher data.Results of this work show that the proposed cryptogra-phy algorithm attains better encryption time,decryption time,throughput and SNR than the conventional cryptography algorithms.展开更多
Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second...Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second, we plot the figures of the state bifurcation and the time evolution of most positive Lyapunov exponent. Third, we apply all of them to search global minima of continuous functions, and respec-tively plot their time evolution figures of most positive Lyapunov exponent and energy func-tion. At last, we make an analysis of the per-formance of these chaotic neural networks.展开更多
Based on current research on applications of chaotic neuron network for information processing, the stability and convergence of chaotic neuron network are proved from the viewpoint of energy function. Moreover, a new...Based on current research on applications of chaotic neuron network for information processing, the stability and convergence of chaotic neuron network are proved from the viewpoint of energy function. Moreover, a new auto-associative matrix is devised for artificial neural network composed of chaotic neurons, thus, an improved chaotic neuron network for associative memory is built up. Finally, the associative recalling process of the network is analyzed in detail and explanations of improvement are given.展开更多
0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. The...0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.展开更多
The purpose of the paper is to present an adaptive control method for the synchronization of different classes of chaotic neural networks. A new sufficient condition for the global synchronization of two kinds of chao...The purpose of the paper is to present an adaptive control method for the synchronization of different classes of chaotic neural networks. A new sufficient condition for the global synchronization of two kinds of chaotic neural networks is derived. The proposed control method is efficient for implementing the synchronization when the parameters of the drive system are different from those of the response system. A numerical example is used to demonstrate the validity of the proposed method and the obtained result.展开更多
This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic syste...This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.展开更多
In the paper, the anti-synchronization problem of the general delayed chaotic neural networks is investigated. For the master and slave systems, we obtain a control law to achieve the state anti-synchronization of two...In the paper, the anti-synchronization problem of the general delayed chaotic neural networks is investigated. For the master and slave systems, we obtain a control law to achieve the state anti-synchronization of two identical chaotic neural networks. By using the Halanay inequality lemma and Lyapunov stability method, we derive a delay indepen- dent sufficient exponential anti-synchronization condition relative to the parameters of the systems and controller gain matrix. The condition is easily verified in practice. Finally, the theoretical results are applied to two delayed chaotic neural networks, and numerical simulations are given to demonstrate the performance of the proposed scheme throughout some examples.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochasti...In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control al- gorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method.展开更多
Under the condition that the damping factor is between zero and one, chaotic dynamics is proved to exist in one-dimensional transiently chaotic neural networks by Li-Misiurewicz theorem. This result extends the previo...Under the condition that the damping factor is between zero and one, chaotic dynamics is proved to exist in one-dimensional transiently chaotic neural networks by Li-Misiurewicz theorem. This result extends the previous result which is done under the condition that the damping factor is zero. Because the value of damping factor affects the speed of dynamical process of transiently chaotic neural networks, this result provides more complete theoretical basis for applications. Finally, two examples by numerical simulation are given to reinforce and illustrate this result.展开更多
基金financially supported by the National KeyTechnology R&D Program during the 12th Five-Year Plan period(2012BAH20B04)the 948 Program of Ministry of Agriculture,China(2013-Z1)
文摘This paper establishes a short-term prediction model of weekly retail prices for eggs based on chaotic neural network with the weekly retail prices of eggs from January 2008 to December 2012 in China.In the process of determining the structure of the chaotic neural network,the number of input layer nodes of the network is calculated by reconstructing phase space and computing its saturated embedding dimension,and then the number of hidden layer nodes is estimated by trial and error.Finally,this model is applied to predict the retail prices of eggs and compared with ARIMA.The result shows that the chaotic neural network has better nonlinear fitting ability and higher precision in the prediction of weekly retail price of eggs.The empirical result also shows that the chaotic neural network can be widely used in the field of short-term prediction of agricultural prices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60973152, and 60573172)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)+2 种基金the Program for Excellent Talents in Universities of Liaoning Province, China (Grant No. LR2012003)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)the Fundamental Research Funds for the Central Universities of China (Grant No. DUT12JB06)
文摘In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hard- ware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosys- tem is secure and practical, and suitable for image encryption.
基金Project supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(Grant No.2012-0000479)the Korea Healthcare Technology R&D Project,Ministry of Health and Welfare,Republic of Korea(Grant No.A100054)
文摘In this paper, we investigate the problem of H∞ synchronization for chaotic neural networks with time-varying delays. A new model of the networks with disturbances in both master and slave systems is presented. By constructing a suitable Lyapunov–Krasovskii functional and using a reciprocally convex approach, a novel H∞ synchronization criterion for the networks concerned is established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Two numerical examples are given to illustrate the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026)the Key Project of Chinese Ministryof Education (Grant No 107058)+1 种基金the Jiangsu Provincial Natural Science Foundation of China (Grant No BK2007016)the Jiangsu Provincial Program for Postgraduate Scientific Innovative Research of Jiangnan University (Grant No CX07B 116z)
文摘In this paper, we focus on the robust adaptive synchronization between two coupled chaotic neural networks with all the parameters unknown and time-varying delay. In order to increase the robustness of the two coupled neural networks, the key idea is that a sliding-mode-type controller is employed. Moreover, without the estimate values of the network unknown parameters taken as an updating object, a new updating object is introduced in the constructing of controller. Using the proposed controller, without any requirements for the boundedness, monotonicity and differentiability of activation functions, and symmetry of connections, the two coupled chaotic neural networks can achieve global robust synchronization no matter what their initial states are. Finally, the numerical simulation validates the effectiveness and feasibility of the proposed technique.
基金Project supported by the National Natural Science Foundation of China (Grant No 60674026), the Science Foundation of Southern Yangtze University, China.
文摘In this paper, a synchronization scheme for a class of chaotic neural networks with time-varying delays is presented. This class of chaotic neural networks covers several well-known neural networks, such as Hopfield neural networks, cellular neural networks, and bidirectional associative memory networks. The obtained criteria are expressed in terms of linear matrix inequalities, thus they can be efficiently verified. A comparison between our results and the previous results shows that our results are less restrictive.
基金Supported by the National Natural Science Foundation of China(No.61302080)Scientific Research Starting Foundation of Fuzhou University(No.022572)Science and Technology Development Foundation of Fuzhou University(No.2013-XY-27)
文摘High-speed train communication system is a typical high-mobility wireless communication network. Resource allocation problem has a great impact on the system performance. However, conventional resource allocation approaches in cellular network cannot be directly applied to this kind of special communication environment. A multidomain resource allocation strategy was proposed in the orthogonal frequency-division multiple access(OFDMA) of high-speed. By analyzing the effect of Doppler shift, sub-channels, antennas, time slots and power were jointly considered to maximize the energy efficiency under the constraint of total transmission power. For the purpose of reducing the computational complexity, noisy chaotic neural network algorithm was used to solve the above optimization problem. Simulation results showed that the proposed resource allocation method had a better performance than the traditional strategy.
基金the National Natural Science Foundation of China (70271065)
文摘It was theoretically proved that one-dimensional transiently chaotic neural networks have chaotic structure in sense of Li-Yorke theorem with some given assumptions using that no division implies chaos. In particular, it is further derived sufficient conditions for the existence of chaos in sense of Li- Yorke theorem in chaotic neural network, which leads to the fact that Aihara has demonstrated by numerical method. Finally, an example and numerical simulation are shown to illustrate and reinforce the previous theory.
基金Project supported by the Science and Technology Support Program of Xingtai,China(Grant No.2019ZC054)。
文摘This paper is concerned with the adaptive synchronization of fractional-order complex-valued chaotic neural networks(FOCVCNNs)with time-delay.The chaotic behaviors of a class of fractional-order complex-valued neural network are investigated.Meanwhile,based on the complex-valued inequalities of fractional-order derivatives and the stability theory of fractional-order complex-valued systems,a new adaptive controller and new complex-valued update laws are proposed to construct a synchronization control model for fractional-order complex-valued chaotic neural networks.Finally,the numerical simulation results are presented to illustrate the effectiveness of the developed synchronization scheme.
文摘In wireless body sensor network(WBSN),the set of electrocardiogram(ECG)data which is collected from sensor nodes and transmitted to the server remotely supports the experts to monitor the health of a patient.While transmit-ting these collected data some adversaries may capture and misuse it due to the compromise of security.So,the major aim of this work is to enhance secure trans-mission of ECG signal in WBSN.To attain this goal,we present Pity Beetle Swarm Optimization Algorithm(PBOA)based Elliptic Galois Cryptography(EGC)with Chaotic Neural Network.To optimize the key generation process in Elliptic Curve Cryptography(ECC)over Galoisfield or EGC,private key is chosen optimally using PBOA algorithm.Then the encryption process is enhanced by presenting chaotic neural network which is used to generate chaotic sequences or cipher data.Results of this work show that the proposed cryptogra-phy algorithm attains better encryption time,decryption time,throughput and SNR than the conventional cryptography algorithms.
文摘Neural networks have been shown to be pow-erful tools for solving optimization problems. In this paper, we first retrospect Chen’s chaotic neural network and then propose several novel chaotic neural networks. Second, we plot the figures of the state bifurcation and the time evolution of most positive Lyapunov exponent. Third, we apply all of them to search global minima of continuous functions, and respec-tively plot their time evolution figures of most positive Lyapunov exponent and energy func-tion. At last, we make an analysis of the per-formance of these chaotic neural networks.
基金National Natural Science Foundation of P.R.China(No. 69735101)
文摘Based on current research on applications of chaotic neuron network for information processing, the stability and convergence of chaotic neuron network are proved from the viewpoint of energy function. Moreover, a new auto-associative matrix is devised for artificial neural network composed of chaotic neurons, thus, an improved chaotic neuron network for associative memory is built up. Finally, the associative recalling process of the network is analyzed in detail and explanations of improvement are given.
基金This project was supported by the National Natural Science Foundation of China (79970042).
文摘0-1 programming is a special case of the integer programming, which is commonly encountered in many optimization problems. Neural network and its general energy function are presented for 0-1 optimization problem. Then, the 0-1 optimization problems are solved by a neural network model with transient chaotic dynamics (TCNN). Numerical simulations of two typical 0-1 optimization problems show that TCNN can overcome HNN's main drawbacks that it suffers from the local minimum and can search for the global optimal solutions in to solveing 0-1 optimization problems.
基金the National Nature Science Foundation of China (No. 60774093, 60774082, 60572070)the National High TechnologyResearch and Develop Program of China (No. 2006AA04Z183)+1 种基金the National Postdoctor Foundation of China (No. 20070411075)the NaturalScience Foundation of Liaoning Province (No. 20072025)
文摘The purpose of the paper is to present an adaptive control method for the synchronization of different classes of chaotic neural networks. A new sufficient condition for the global synchronization of two kinds of chaotic neural networks is derived. The proposed control method is efficient for implementing the synchronization when the parameters of the drive system are different from those of the response system. A numerical example is used to demonstrate the validity of the proposed method and the obtained result.
基金Project supported in part by the National Natural Science Foundationof China (No. 60504024)the Specialized Research Fund for theDoctoral Program of Higher Education,China (No. 20060335022)+1 种基金theNatural Science Foundation of Zhejiang Province (No. Y106010),China the "151 Talent Project" of Zhejiang Province (Nos.05-3-1013 and 06-2-034),China
文摘This paper investigates the exponential synchronization problem of some chaotic delayed neural networks based on the proposed general neural network model,which is the interconnection of a linear delayed dynamic system and a bounded static nonlinear operator,and covers several well-known neural networks,such as Hopfield neural networks,cellular neural networks(CNNs),bidirectional associative memory(BAM)networks,recurrent multilayer perceptrons(RMLPs).By virtue of Lyapunov-Krasovskii stability theory and linear matrix inequality(LMI)technique,some exponential synchronization criteria are derived.Using the drive-response concept,hybrid feedback controllers are designed to synchronize two identical chaotic neural networks based on those synchronization criteria.Finally,detailed comparisons with existing results are made and numerical simulations are carried out to demonstrate the effectiveness of the established synchronization laws.
文摘In the paper, the anti-synchronization problem of the general delayed chaotic neural networks is investigated. For the master and slave systems, we obtain a control law to achieve the state anti-synchronization of two identical chaotic neural networks. By using the Halanay inequality lemma and Lyapunov stability method, we derive a delay indepen- dent sufficient exponential anti-synchronization condition relative to the parameters of the systems and controller gain matrix. The condition is easily verified in practice. Finally, the theoretical results are applied to two delayed chaotic neural networks, and numerical simulations are given to demonstrate the performance of the proposed scheme throughout some examples.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+2 种基金Liaoning Provincial Natural Science Foundation,China (Grant No 20062018)the State Key Development Program for Basic Research of China (Grant No 2009CB320601)111 Project (Grant No B08015)
文摘In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control al- gorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China(No.11071238)the Key Lab of Random Complex Structures and Data Science,CAS(No.2008DP173182)the National Center for Mathematics and Interdisciplinary Sciences,CAS(No.Y029184K51)
文摘Under the condition that the damping factor is between zero and one, chaotic dynamics is proved to exist in one-dimensional transiently chaotic neural networks by Li-Misiurewicz theorem. This result extends the previous result which is done under the condition that the damping factor is zero. Because the value of damping factor affects the speed of dynamical process of transiently chaotic neural networks, this result provides more complete theoretical basis for applications. Finally, two examples by numerical simulation are given to reinforce and illustrate this result.