Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to ...Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to other existing neural networks, genetic algorithms, and simulated annealing algorithms in global optimization. In the present CPDA network, we add some chaotic parameters in the energy function, which make the Hopfield neural network escape from the attraction of a local minimal solution and with the parameter annealing, our model will converge to the global optimal solutions quickly and steadily. The converge ability and other characters are also analyzed in this paper. The benchmark examples show the present CPDA neural network's merits in nonlinear global optimization.展开更多
The anti-synchronization between different chaotic/hyperchaotic systems with fully unknown parameters is considered in detail. Based on Lyapunov stability theory, the adaptive control schemes and parameter update rule...The anti-synchronization between different chaotic/hyperchaotic systems with fully unknown parameters is considered in detail. Based on Lyapunov stability theory, the adaptive control schemes and parameter update rules are designed in this paper. Two numerical examples show the effectiveness and feasibility of the proposed method.展开更多
We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-d...We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.展开更多
Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order ...Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.展开更多
Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are ...Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are obtained by phase-space reconstruction, and its attractor evolution is analyzed. The results indicate that the friction noise is chaotic because the largest Lyapunov exponent is positive. The phase trajectory of the friction noise follows a "convergence-stability-divergence" pattern during the friction process. The friction noise attractor begins forming in the running-in process, and the correlation dimension D increases gradually. In the stable process, the attractor remains steady, and D is stable. In the last step of the process, the attractor gradually disappears, and D decreases. The friction noise attractor is a chaotic attractor. Knowledge of the dynamic evolution of this attractor can help identify wear state changes from the running-in process to the steady and increasing friction processes.展开更多
文摘Since there were few chaotic neural networks applicable to the global optimization, in this paper, we propose a new neural network model ? chaotic parameters disturbance annealing (CPDA) network, which is superior to other existing neural networks, genetic algorithms, and simulated annealing algorithms in global optimization. In the present CPDA network, we add some chaotic parameters in the energy function, which make the Hopfield neural network escape from the attraction of a local minimal solution and with the parameter annealing, our model will converge to the global optimal solutions quickly and steadily. The converge ability and other characters are also analyzed in this paper. The benchmark examples show the present CPDA neural network's merits in nonlinear global optimization.
基金Supported by National Natural Science Foundation of China(No.60874113)
文摘The anti-synchronization between different chaotic/hyperchaotic systems with fully unknown parameters is considered in detail. Based on Lyapunov stability theory, the adaptive control schemes and parameter update rules are designed in this paper. Two numerical examples show the effectiveness and feasibility of the proposed method.
基金the Ministry of Science and Technology of India(Grant No.DST/Inspire Fellowship/2010/[293]/dt.18/03/2011)
文摘We investigate the stochastic asymptotical synchronization of chaotic Markovian jumping fuzzy cellular neural networks (MJFCNNs) with discrete, unbounded distributed delays, and the Wiener process based on sampled-data control using the linear matrix inequality (LMI) approach. The Lyapunov–Krasovskii functional combined with the input delay approach as well as the free-weighting matrix approach is employed to derive several sufficient criteria in terms of LMIs to ensure that the delayed MJFCNNs with the Wiener process is stochastic asymptotical synchronous. Restrictions (e.g., time derivative is smaller than one) are removed to obtain a proposed sampled-data controller. Finally, a numerical example is provided to demonstrate the reliability of the derived results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172333&11272361)the Guangdong Province Natural Science Foundation(Grant No.2015A030313126)the Guangdong Province Science and Technology Program(Grant Nos.2014A020218004&2016A020223006)
文摘Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.
基金supported by the National Natural Science Foundation of China(Grant No.51375480)the Graduate Scientific Research Innovation Projects of Jiangsu Higher Education Institutions(Grant No.KYLX16_0527)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Friction experiments are conducted on a ring-on-disk tribometer, and friction noise produced during the friction process is extracted by a microphone. The phase trajectory and chaotic parameters of friction noise are obtained by phase-space reconstruction, and its attractor evolution is analyzed. The results indicate that the friction noise is chaotic because the largest Lyapunov exponent is positive. The phase trajectory of the friction noise follows a "convergence-stability-divergence" pattern during the friction process. The friction noise attractor begins forming in the running-in process, and the correlation dimension D increases gradually. In the stable process, the attractor remains steady, and D is stable. In the last step of the process, the attractor gradually disappears, and D decreases. The friction noise attractor is a chaotic attractor. Knowledge of the dynamic evolution of this attractor can help identify wear state changes from the running-in process to the steady and increasing friction processes.