To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN) hybrid algorithm were proposed. By combining with the chaotic searching, the learning abilit...To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN) hybrid algorithm were proposed. By combining with the chaotic searching, the learning ability of the FNN was markedly enhanced. Customers’ actual credit flaw data of power supply enterprises were collected to carry on the real evaluation, which can be treated as example for the model. The result shows that the proposed method surpasses the traditional statistical models in regard to the precision of forecasting and has a practical value. Compared with the results of ordinary FNN and ANN, the precision of the proposed algorithm can be enhanced by 2.2% and 4.5%, respectively.展开更多
Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems...Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.展开更多
By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for...By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.展开更多
A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems....A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.展开更多
In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evoluti...In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems.展开更多
An adaptive chaotic gradient descending optimization algorithm for single objective optimization was presented. A local minimum judged by two rules was obtained by an improved mutative-step gradient descending method....An adaptive chaotic gradient descending optimization algorithm for single objective optimization was presented. A local minimum judged by two rules was obtained by an improved mutative-step gradient descending method. A new optimal minimum was obtained to replace the local minimum by mutative-scale chaotic search algorithm whose scales are magnified gradually from a small scale in order to escape local minima. The global optimal value was attained by repeatedly iterating. At last, a BP (back-propagation) neural network model for forecasting slag output in matte converting was established. The algorithm was used to train the weights of the BP neural network model. The simulation results with a training data set of 400 samples show that the training process can be finished within 300 steps to obtain the global optimal value, and escape local minima effectively. An optimization system for operation parameters, which includes the forecasting model, is achieved, in which the output of converter increases by 6.0%, and the amount of the treated cool materials rises by 7.8% in the matte converting process.展开更多
Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that red...Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.展开更多
A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear cont...A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.展开更多
A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback ...A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy.展开更多
Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural ne...Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.展开更多
Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many r...Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum.展开更多
Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents...Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.展开更多
In this work,we propose a real proportional-integral-derivative plus second-order derivative(PIDD2)controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to ...In this work,we propose a real proportional-integral-derivative plus second-order derivative(PIDD2)controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to efficient operation.In this regard,this paper is the first report in the literature demonstrating the implementation of a real PIDD2 controller for controlling the respective system.We construct a novel and efficient metaheuristic algorithm by improving the performance of the Aquila Optimizer via chaotic local search and modified opposition-based learning strategies and use it as an excellently performing tuning mechanism.We also propose a simple yet effective objective function to increase the performance of the proposed algorithm(CmOBL-AO)to adjust the real PIDD2 controller's parameters effectively.We show the CmOBL-AO algorithm to perform better than the differential evolution algorithm,gravitational search algorithm,African vultures optimization,and the Aquila Optimizer using well-known unimodal,multimodal benchmark functions.CEC2019 test suite is also used to perform ablation experiments to reveal the separate contributions of chaotic local search and modified opposition-based learning strategies to the CmOBL-AO algorithm.For the vehicle cruise control system,we confirm the more excellent performance of the proposed method against particle swarm,gray wolf,salp swarm,and original Aquila optimizers using statistical,Wilcoxon signed-rank,time response,robustness,and disturbance rejection analyses.We also use fourteen reported methods in the literature for the vehicle cruise control system to further verify the more promising performance of the CmOBL-AO-based real PIDD2 controller from a wider perspective.The excellent performance of the proposed method is also illustrated through different quality indicators and different operating speeds.Lastly,we also demonstrate the good performing capability of the CmOBL-AO algorithm for real traffic cases.We show the CmOBL-AO-based real PIDD2 controller as the most efficient method to control a vehicle cruise control system.展开更多
Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order ...Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.展开更多
Flexible AC transmission systems(FACTS)devices can effectively optimize the distribution of power flow.Power flow entropy can be applied as a measure of load distribution.In this paper,a method is proposed to optimize...Flexible AC transmission systems(FACTS)devices can effectively optimize the distribution of power flow.Power flow entropy can be applied as a measure of load distribution.In this paper,a method is proposed to optimize the distribution of power flow with the coordination of multi-type FACTS devices and establishes the corresponding mathematical models.The modified group searcher optimization(GSO)algorithm is proposed,in which the angle search is combined with chaotic search model to avoid jumping into local optimization.Compared with the different optimal allocation of multi-FACTS devices,the optimal allocation of multi-FACTS devices is achieved under the economic constraints.The locations obtained by this method can achieve the purpose of balancing power flow and enhancing the system performances.The simulations are demonstrated in an IEEE 118-bus power system with two classical types of FACTS,namely static var compensator(SVC)and thyristor controlled series Compensator(TCSC).The simulation results show that the proposed method is feasible and effective.展开更多
Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybri...Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-展开更多
To reduce environmental pollution and improve the efficiency of cascaded energy utilization, regional integrated energy system(RIES) has received extensive attention. An accurate multi-energy load prediction is signif...To reduce environmental pollution and improve the efficiency of cascaded energy utilization, regional integrated energy system(RIES) has received extensive attention. An accurate multi-energy load prediction is significant for RIES as it enables stakeholders to make effective decisions for carbon peaking and carbon neutrality goals. To this end, this paper proposes a multivariate two-stage adaptive-stacking prediction(M2ASP) framework. First, a preprocessing module based on ensemble learning is proposed. The input data are preprocessed to provide a reliable database for M2ASP, and highly correlated input variables of multi-energy load prediction are determined. Then, the load prediction results of four predictors are adaptively combined in the first stage of M2ASP to enhance generalization ability. Predictor hyper-parameters and intermediate data sets of M2ASP are trained with a metaheuristic method named collaborative atomic chaotic search(CACS) to achieve the adaptive staking of M2ASP. Finally, a prediction correction of the peak load consumption period is conducted in the second stage of M2ASP. The case studies indicate that the proposed framework has higher prediction accuracy, generalization ability, and stability than other benchmark prediction models.展开更多
基金Project(50579101) supported by the National Natural Science Foundation of China
文摘To evaluate the credit risk of customers in power market precisely, the new chaotic searching and fuzzy neural network (FNN) hybrid algorithm were proposed. By combining with the chaotic searching, the learning ability of the FNN was markedly enhanced. Customers’ actual credit flaw data of power supply enterprises were collected to carry on the real evaluation, which can be treated as example for the model. The result shows that the proposed method surpasses the traditional statistical models in regard to the precision of forecasting and has a practical value. Compared with the results of ordinary FNN and ANN, the precision of the proposed algorithm can be enhanced by 2.2% and 4.5%, respectively.
基金funded by Firat University Scientific Research Projects Management Unit for the scientific research project of Feyza AltunbeyÖzbay,numbered MF.23.49.
文摘Artificial rabbits optimization(ARO)is a recently proposed biology-based optimization algorithm inspired by the detour foraging and random hiding behavior of rabbits in nature.However,for solving optimization problems,the ARO algorithm shows slow convergence speed and can fall into local minima.To overcome these drawbacks,this paper proposes chaotic opposition-based learning ARO(COARO),an improved version of the ARO algorithm that incorporates opposition-based learning(OBL)and chaotic local search(CLS)techniques.By adding OBL to ARO,the convergence speed of the algorithm increases and it explores the search space better.Chaotic maps in CLS provide rapid convergence by scanning the search space efficiently,since their ergodicity and non-repetitive properties.The proposed COARO algorithm has been tested using thirty-three distinct benchmark functions.The outcomes have been compared with the most recent optimization algorithms.Additionally,the COARO algorithm’s problem-solving capabilities have been evaluated using six different engineering design problems and compared with various other algorithms.This study also introduces a binary variant of the continuous COARO algorithm,named BCOARO.The performance of BCOARO was evaluated on the breast cancer dataset.The effectiveness of BCOARO has been compared with different feature selection algorithms.The proposed BCOARO outperforms alternative algorithms,according to the findings obtained for real applications in terms of accuracy performance,and fitness value.Extensive experiments show that the COARO and BCOARO algorithms achieve promising results compared to other metaheuristic algorithms.
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.
基金Projects(50275150,61173052) supported by the National Natural Science Foundation of ChinaProject(14FJ3112) supported by the Planned Science and Technology of Hunan Province,ChinaProject(14B033) supported by Scientific Research Fund Education Department of Hunan Province,China
文摘A novel chaotic search method is proposed,and a hybrid algorithm combining particle swarm optimization(PSO) with this new method,called CLSPSO,is put forward to solve 14 integer and mixed integer programming problems.The performances of CLSPSO are compared with those of other five hybrid algorithms combining PSO with chaotic search methods.Experimental results indicate that in terms of robustness and final convergence speed,CLSPSO is better than other five algorithms in solving many of these problems.Furthermore,CLSPSO exhibits good performance in solving two high-dimensional problems,and it finds better solutions than the known ones.A performance index(PI) is introduced to fairly compare the above six algorithms,and the obtained values of(PI) in three cases demonstrate that CLSPSO is superior to all the other five algorithms under the same conditions.
基金Project(20040533035)supported by the National Research Foundation for the Doctoral Program of Higher Education of ChinaProject(60874070)supported by the National Natural Science Foundation of China
文摘In order to solve reliability-redundancy allocation problems more effectively, a new hybrid algorithm named CDEPSO is proposed in this work, which combines particle swarm optimization (PSO) with differential evolution (DE) and a new chaotic local search. In the CDEPSO algorithm, DE provides its best solution to PSO if the best solution obtained by DE is better than that by PSO, while the best solution in the PSO is performed by chaotic local search. To investigate the performance of CDEPSO, four typical reliability-redundancy allocation problems were solved and the results indicate that the convergence speed and robustness of CDEPSO is better than those of PSO and CPSO (a hybrid algorithm which only combines PSO with chaotic local search). And, compared with the other six improved meta-heuristics, CDEPSO also exhibits more robust performance. In addition, a new performance was proposed to more fairly compare CDEPSO with the same six improved recta-heuristics, and CDEPSO algorithm is the best in solving these problems.
文摘An adaptive chaotic gradient descending optimization algorithm for single objective optimization was presented. A local minimum judged by two rules was obtained by an improved mutative-step gradient descending method. A new optimal minimum was obtained to replace the local minimum by mutative-scale chaotic search algorithm whose scales are magnified gradually from a small scale in order to escape local minima. The global optimal value was attained by repeatedly iterating. At last, a BP (back-propagation) neural network model for forecasting slag output in matte converting was established. The algorithm was used to train the weights of the BP neural network model. The simulation results with a training data set of 400 samples show that the training process can be finished within 300 steps to obtain the global optimal value, and escape local minima effectively. An optimization system for operation parameters, which includes the forecasting model, is achieved, in which the output of converter increases by 6.0%, and the amount of the treated cool materials rises by 7.8% in the matte converting process.
基金partially supported by the Japan Society for the Promotion of Science(JSPS)KAKENHI(JP22H03643)Japan Science and Technology Agency(JST)Support for Pioneering Research Initiated by the Next Generation(SPRING)(JPMJSP2145)JST through the Establishment of University Fellowships towards the Creation of Science Technology Innovation(JPMJFS2115)。
文摘Wind energy has been widely applied in power generation to alleviate climate problems.The wind turbine layout of a wind farm is a primary factor of impacting power conversion efficiency due to the wake effect that reduces the power outputs of wind turbines located in downstream.Wind farm layout optimization(WFLO)aims to reduce the wake effect for maximizing the power outputs of the wind farm.Nevertheless,the wake effect among wind turbines increases significantly as the number of wind turbines increases in the wind farm,which severely affect power conversion efficiency.Conventional heuristic algorithms suffer from issues of low solution quality and local optimum for large-scale WFLO under complex wind scenarios.Thus,a chaotic local search-based genetic learning particle swarm optimizer(CGPSO)is proposed to optimize large-scale WFLO problems.CGPSO is tested on four larger-scale wind farms under four complex wind scenarios and compares with eight state-of-the-art algorithms.The experiment results indicate that CGPSO significantly outperforms its competitors in terms of performance,stability,and robustness.To be specific,a success and failure memories-based selection is proposed to choose a chaotic map for chaotic search local.It improves the solution quality.The parameter and search pattern of chaotic local search are also analyzed for WFLO problems.
基金Project(2015BAG06B00)supported by the National Key Technology Research from Development Program of the Ministry of Science and Technology of China
文摘A new modified LuGre friction model is presented for electromagnetic valve actuator system.The modification to the traditional LuGre friction model is made by adding an acceleration-dependent part and a nonlinear continuous switch function.The proposed new friction model solves the implementation problems with the traditional LuGre model at high speeds.An improved artificial fish swarm algorithm(IAFSA)method which combines the chaotic search and Gauss mutation operator into traditional artificial fish swarm algorithm is used to identify the parameters in the proposed modified LuGre friction model.The steady state response experiments and dynamic friction experiments are implemented to validate the effectiveness of IAFSA algorithm.The comparisons between the measured dynamic friction forces and the ones simulated with the established mathematic friction model at different frequencies and magnitudes demonstrate that the proposed modified LuGre friction model can give accurate simulation about the dynamic friction characteristics existing in the electromagnetic valve actuator system.The presented modelling and parameter identification methods are applicable for many other high-speed mechanical systems with friction.
文摘A multilayer recurrent fuzzy neural network(MRFNN)is proposed for accurate dynamic system modeling.The proposed MRFNN has six layers combined with T-S fuzzy model.The recurrent structures are formed by local feedback connections in the membership layer and the rule layer.With these feedbacks,the fuzzy sets are time-varying and the temporal problem of dynamic system can be solved well.The parameters of MRFNN are learned by chaotic search(CS)and least square estimation(LSE)simultaneously,where CS is for tuning the premise parameters and LSE is for updating the consequent coefficients accordingly.Results of simulations show the proposed approach is effective for dynamic system modeling with high accuracy.
基金supported by the Major Project of Basic and Applied Research in Guangdong Universities (2017WZDXM012)。
文摘Since the existing prediction methods have encountered difficulties in processing themultiple influencing factors in short-term power load forecasting,we propose a bidirectional long short-term memory(BiLSTM)neural network model based on the temporal pattern attention(TPA)mechanism.Firstly,based on the grey relational analysis,datasets similar to forecast day are obtained.Secondly,thebidirectional LSTM layermodels the data of thehistorical load,temperature,humidity,and date-type and extracts complex relationships between data from the hidden row vectors obtained by the BiLSTM network,so that the influencing factors(with different characteristics)can select relevant information from different time steps to reduce the prediction error of the model.Simultaneously,the complex and nonlinear dependencies between time steps and sequences are extracted by the TPA mechanism,so the attention weight vector is constructed for the hidden layer output of BiLSTM and the relevant variables at different time steps are weighted to influence the input.Finally,the chaotic sparrow search algorithm(CSSA)is used to optimize the hyperparameter selection of the model.The short-term power load forecasting on different data sets shows that the average absolute errors of short-termpower load forecasting based on our method are 0.876 and 4.238,respectively,which is lower than other forecastingmethods,demonstrating the accuracy and stability of our model.
文摘Team Formation(TF)is considered one of the most significant problems in computer science and optimization.TF is defined as forming the best team of experts in a social network to complete a task with least cost.Many real-world problems,such as task assignment,vehicle routing,nurse scheduling,resource allocation,and airline crew scheduling,are based on the TF problem.TF has been shown to be a Nondeterministic Polynomial time(NP)problem,and high-dimensional problem with several local optima that can be solved using efficient approximation algorithms.This paper proposes two improved swarm-based algorithms for solving team formation problem.The first algorithm,entitled Hybrid Heap-Based Optimizer with Simulated Annealing Algorithm(HBOSA),uses a single crossover operator to improve the performance of a standard heap-based optimizer(HBO)algorithm.It also employs the simulated annealing(SA)approach to improve model convergence and avoid local minima trapping.The second algorithm is the Chaotic Heap-based Optimizer Algorithm(CHBO).CHBO aids in the discovery of new solutions in the search space by directing particles to different regions of the search space.During HBO’s optimization process,a logistic chaotic map is used.The performance of the two proposed algorithms(HBOSA)and(CHBO)is evaluated using thirteen benchmark functions and tested in solving the TF problem with varying number of experts and skills.Furthermore,the proposed algorithms were compared to well-known optimization algorithms such as the Heap-Based Optimizer(HBO),Developed Simulated Annealing(DSA),Particle SwarmOptimization(PSO),GreyWolfOptimization(GWO),and Genetic Algorithm(GA).Finally,the proposed algorithms were applied to a real-world benchmark dataset known as the Internet Movie Database(IMDB).The simulation results revealed that the proposed algorithms outperformed the compared algorithms in terms of efficiency and performance,with fast convergence to the global minimum.
基金supported by the Science and Technology Project of Central China Branch of State Grid Corporation of China under 5214JS220010.
文摘Along with the increasing integration of renewable energy generation in AC-DC power networks,investigating the dynamic behaviors of this complex system with a proper equivalent model is significant.This paper presents an equivalent modeling method for the AC-DC power networks with doubly-fed induction generator(DFIG)based wind farms to decrease the simulation scale and computational burden.For the AC-DC power networks,the equivalent modeling strategy in accordance with the physical structure simplification is stated.Regarding the DFIG-based wind farms,the equivalent modeling based on the sequential identification of multi-machine parameters using the improved chaotic cuckoo search algorithm(ICCSA)is conducted.In light of the MATLAB simulation platform,a two-zone four-DC interconnected power grid with wind farms is built to check the efficacy of the proposed equivalentmodelingmethod.Fromthe simulation analyses and comparative validation in different algorithms and cases,the proposed method can precisely reflect the steady and dynamic performance of the demonstrated system under N-1 and N-2 fault scenarios,and it can efficiently achieve the parameter identification of the wind farms and fulfill the equivalent modeling.Consequently,the proposed approach’s effectiveness and suitability are confirmed.
文摘In this work,we propose a real proportional-integral-derivative plus second-order derivative(PIDD2)controller as an efficient controller for vehicle cruise control systems to address the challenging issues related to efficient operation.In this regard,this paper is the first report in the literature demonstrating the implementation of a real PIDD2 controller for controlling the respective system.We construct a novel and efficient metaheuristic algorithm by improving the performance of the Aquila Optimizer via chaotic local search and modified opposition-based learning strategies and use it as an excellently performing tuning mechanism.We also propose a simple yet effective objective function to increase the performance of the proposed algorithm(CmOBL-AO)to adjust the real PIDD2 controller's parameters effectively.We show the CmOBL-AO algorithm to perform better than the differential evolution algorithm,gravitational search algorithm,African vultures optimization,and the Aquila Optimizer using well-known unimodal,multimodal benchmark functions.CEC2019 test suite is also used to perform ablation experiments to reveal the separate contributions of chaotic local search and modified opposition-based learning strategies to the CmOBL-AO algorithm.For the vehicle cruise control system,we confirm the more excellent performance of the proposed method against particle swarm,gray wolf,salp swarm,and original Aquila optimizers using statistical,Wilcoxon signed-rank,time response,robustness,and disturbance rejection analyses.We also use fourteen reported methods in the literature for the vehicle cruise control system to further verify the more promising performance of the CmOBL-AO-based real PIDD2 controller from a wider perspective.The excellent performance of the proposed method is also illustrated through different quality indicators and different operating speeds.Lastly,we also demonstrate the good performing capability of the CmOBL-AO algorithm for real traffic cases.We show the CmOBL-AO-based real PIDD2 controller as the most efficient method to control a vehicle cruise control system.
基金supported by the National Natural Science Foundation of China(Grant Nos.11172333&11272361)the Guangdong Province Natural Science Foundation(Grant No.2015A030313126)the Guangdong Province Science and Technology Program(Grant Nos.2014A020218004&2016A020223006)
文摘Artificial bee colony(ABC) algorithm is motivated by the intelligent behavior of honey bees when seeking a high quality food source. It has a relatively simple structure but good global optimization ability. In order to balance its global search and local search abilities further, some improvements for the standard ABC algorithm are made in this study. Firstly, the local search mechanism of cuckoo search optimization(CS) is introduced into the onlooker bee phase to enhance its dedicated search; secondly, the scout bee phase is also modified by the chaotic search mechanism. The improved ABC algorithm is used to identify the parameters of chaotic systems, the identified results from the present algorithm are compared with those from other algorithms. Numerical simulations, including Lorenz system and a hyper chaotic system, illustrate the present algorithm is a powerful tool for parameter estimation with high accuracy and low deviations. It is not sensitive to artificial measurement noise even using limited input data.
基金This work was funded by National Science and Technology Support Program of China(2010BAE00816).
文摘Flexible AC transmission systems(FACTS)devices can effectively optimize the distribution of power flow.Power flow entropy can be applied as a measure of load distribution.In this paper,a method is proposed to optimize the distribution of power flow with the coordination of multi-type FACTS devices and establishes the corresponding mathematical models.The modified group searcher optimization(GSO)algorithm is proposed,in which the angle search is combined with chaotic search model to avoid jumping into local optimization.Compared with the different optimal allocation of multi-FACTS devices,the optimal allocation of multi-FACTS devices is achieved under the economic constraints.The locations obtained by this method can achieve the purpose of balancing power flow and enhancing the system performances.The simulations are demonstrated in an IEEE 118-bus power system with two classical types of FACTS,namely static var compensator(SVC)and thyristor controlled series Compensator(TCSC).The simulation results show that the proposed method is feasible and effective.
基金supported by the Natural Science Foundation of Hubei Province(Grant No.2015CFB586)
文摘Improvements in fuel consumption and emissions of hybrid electric vehicle(HEV)heavily depend upon an efficient energy management strategy(EMS).This paper presents an optimizing fuzzy control strategy of parallel hybrid electric vehicle em-
基金supported in part by Science and Technology Project of the Headquarters of State Grid Corporation of China (No. 5100-202155018A-0-0-00)the National Natural Science Foundation of China (No. 51807134)+1 种基金the State Key Laboratory of Power System and Generation Equipment (No. SKLD21KM10)the Natural Science and Engineering Research Council of Canada (NSERC)(No. RGPIN-2018-06724)。
文摘To reduce environmental pollution and improve the efficiency of cascaded energy utilization, regional integrated energy system(RIES) has received extensive attention. An accurate multi-energy load prediction is significant for RIES as it enables stakeholders to make effective decisions for carbon peaking and carbon neutrality goals. To this end, this paper proposes a multivariate two-stage adaptive-stacking prediction(M2ASP) framework. First, a preprocessing module based on ensemble learning is proposed. The input data are preprocessed to provide a reliable database for M2ASP, and highly correlated input variables of multi-energy load prediction are determined. Then, the load prediction results of four predictors are adaptively combined in the first stage of M2ASP to enhance generalization ability. Predictor hyper-parameters and intermediate data sets of M2ASP are trained with a metaheuristic method named collaborative atomic chaotic search(CACS) to achieve the adaptive staking of M2ASP. Finally, a prediction correction of the peak load consumption period is conducted in the second stage of M2ASP. The case studies indicate that the proposed framework has higher prediction accuracy, generalization ability, and stability than other benchmark prediction models.