In this paper,some basic properties of a new four-dimensional(4 D)continuous autonomous chaotic system,in which each equation contains a cubic cross-product term,are further analyzed.The new system has 9 equilibria di...In this paper,some basic properties of a new four-dimensional(4 D)continuous autonomous chaotic system,in which each equation contains a cubic cross-product term,are further analyzed.The new system has 9 equilibria displaying graceful symmetry with respect to the origin and coordinate planes,and the stability of them are discussed.Then detailed bifurcation analysis is given to demonstrate the evolution processes of the system.Numerical simulations show that the system evolves chaotic motions through period-doubling bifurcation or intermittence chaos while the system parameters vary.We design a new scheme of generalized projective synchronization,so-called unified generalized projective synchronization,whose response signal synchronizes with the linear combination of drive signal.The design has the advantages of containing complete synchronization,anti-synchronization and disorder synchronization over the usual generalized projective synchronization,such that it can provide greater security in secure communication.Based on Lyapunov stability theorem,some sufficient conditions for the new synchronization are inferred.Numerical simulations demonstrate the effectiveness and feasibility of the method by employing the four-wing chaotic system.展开更多
基金Supported by the National Natural Science Foundation of China(61863022)the Natural Science Foundation of Gansu Province(17JR5RA096)。
文摘In this paper,some basic properties of a new four-dimensional(4 D)continuous autonomous chaotic system,in which each equation contains a cubic cross-product term,are further analyzed.The new system has 9 equilibria displaying graceful symmetry with respect to the origin and coordinate planes,and the stability of them are discussed.Then detailed bifurcation analysis is given to demonstrate the evolution processes of the system.Numerical simulations show that the system evolves chaotic motions through period-doubling bifurcation or intermittence chaos while the system parameters vary.We design a new scheme of generalized projective synchronization,so-called unified generalized projective synchronization,whose response signal synchronizes with the linear combination of drive signal.The design has the advantages of containing complete synchronization,anti-synchronization and disorder synchronization over the usual generalized projective synchronization,such that it can provide greater security in secure communication.Based on Lyapunov stability theorem,some sufficient conditions for the new synchronization are inferred.Numerical simulations demonstrate the effectiveness and feasibility of the method by employing the four-wing chaotic system.