期刊文献+
共找到2,448篇文章
< 1 2 123 >
每页显示 20 50 100
SELECTION OF OBJECTIVE FUNCTIONS AND APPLICATION OF GENETIC ALGORITHMS IN DAMPING DESIGN OF PIPE SYSTEM 被引量:1
1
作者 ChenYanqiu FanQinsban ZhuZigen 《Acta Mechanica Solida Sinica》 SCIE EI 2003年第2期171-178,共8页
The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functio... The vibration failure of pipe system of aeroengine seriously influences the safety of aircraft.Its damping design is determined by the selection of the design target,method and their feasibility.Five objective functions for the vibration design of a pipeline or pipe system are introduced,namely,the frequency,amplitude,transfer ratio,curvature and deformation energy as options for the optimization process.The genetic algorithms(GA)are adopted as the opti- mization method,in which the selection of the adaptive genetic operators and the method of implementation of the GA process are crucial.The optimization procedure for all the above ob- jective functions is carried out using GA on the basis of finite element software-MSC/NASTRAN. The optimal solutions of these functions and the stress distribution on the structure are calculated and compared through an example,and their characteristics are analyzed.Finally we put forward two new objective functions,curvature and deformation energy for pipe system optimization.The calculations show that using the curvature as the objective function can reflect the case of minimal stress,and the optimization results using the deformation energy represent lesser and more uni- form stress distribution.The calculation results and process showed that the genetic algorithms can effectively implement damping design of engine pipelines and satisfy the efficient engineering design requirement. 展开更多
关键词 objective function genetic algorithms optimization pipe system
下载PDF
Family genetic algorithms based on gene exchange and its application 被引量:1
2
作者 Li Jianhua Ding Xiangqian +1 位作者 Wang Sun'an Yu Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期864-869,共6页
Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not... Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance. 展开更多
关键词 genetic algorithms function optimization image matching population size individual space.
下载PDF
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
3
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(RBF) non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ)
下载PDF
Satellite constellation design with genetic algorithms based on system performance
4
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
下载PDF
Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions 被引量:4
5
作者 谭冠政 周代明 +1 位作者 江斌 DIOUBATE Mamady I 《Journal of Central South University of Technology》 EI 2008年第6期845-852,共8页
A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody s... A novel immune genetic algorithm with the elitist selection and elitist crossover was proposed, which is called the immune genetic algorithm with the elitism (IGAE). In IGAE, the new methods for computing antibody similarity, expected reproduction probability, and clonal selection probability were given. IGAE has three features. The first is that the similarities of two antibodies in structure and quality are all defined in the form of percentage, which helps to describe the similarity of two antibodies more accurately and to reduce the computational burden effectively. The second is that with the elitist selection and elitist crossover strategy IGAE is able to find the globally optimal solution of a given problem. The third is that the formula of expected reproduction probability of antibody can be adjusted through a parameter r, which helps to balance the population diversity and the convergence speed of IGAE so that IGAE can find the globally optimal solution of a given problem more rapidly. Two different complex multi-modal functions were selected to test the validity of IGAE. The experimental results show that IGAE can find the globally maximum/minimum values of the two functions rapidly. The experimental results also confirm that IGAE is of better performance in convergence speed, solution variation behavior, and computational efficiency compared with the canonical genetic algorithm with the elitism and the immune genetic algorithm with the information entropy and elitism. 展开更多
关键词 immune genetic algorithm multi-modal function optimization evolutionary computation elitist selection elitist crossover
下载PDF
A comparative study of differential evolution and genetic algorithms for optimizing the design of water distribution systems 被引量:2
6
作者 Xiao-lei DONG Sui-qing LIU +2 位作者 Tao TAO Shu-ping LI Kun-lun XIN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2012年第9期674-686,共13页
The differential evolution (DE) algorithm has been received increasing attention in terms of optimizing the design for the water distribution systems (WDSs). This paper aims to carry out a comprehensive performari... The differential evolution (DE) algorithm has been received increasing attention in terms of optimizing the design for the water distribution systems (WDSs). This paper aims to carry out a comprehensive performarice comparison between the new emerged DE algorithm and the most popular algorithm-the genetic algorithm (GA). A total of six benchmark WDS case studies were used with the number of decision variables ranging from 8 to 454. A preliminary sensitivity analysis was performed to select the most effective parameter values for both algorithms to enable the fair comparison. It is observed from the results that the DE algorithm consistently outperforms the GA in terms of both efficiency and the solution quality for each case study. Additionally, the DE algorithm was also compared with the previously published optimization algorithms based on the results for those six case studies, indicating that the DE exhibits comparable performance with other algorithms. It can be concluded that the DE is a newly promising optimization algorithm in the design of WDSs. 展开更多
关键词 Differential evolution (DE) genetic algorithms (GAs) optimization Water distribution systems (WDSs)
原文传递
Adaptive immune-genetic algorithm for global optimization to multivariable function 被引量:9
7
作者 Dai Yongshou Li Yuanyuan +2 位作者 Wei Lei Wang Junling Zheng Deling 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期655-660,共6页
An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density opera... An adaptive immune-genetic algorithm (AIGA) is proposed to avoid premature convergence and guarantee the diversity of the population. Rapid immune response (secondary response), adaptive mutation and density operators in the AIGA are emphatically designed to improve the searching ability, greatly increase the converging speed, and decrease locating the local maxima due to the premature convergence. The simulation results obtained from the global optimization to four multivariable and multi-extreme functions show that AIGA converges rapidly, guarantees the diversity, stability and good searching ability. 展开更多
关键词 immune-genetic algorithm function optimization hyper-mutation density operator.
下载PDF
An Improved Harris Hawk Optimization Algorithm
8
作者 GuangYa Chong Yongliang YUAN 《Mechanical Engineering Science》 2024年第1期21-25,共5页
Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).F... Aiming at the problems that the original Harris Hawk optimization algorithm is easy to fall into local optimum and slow in finding the optimum,this paper proposes an improved Harris Hawk optimization algorithm(GHHO).Firstly,we used a Gaussian chaotic mapping strategy to initialize the positions of individuals in the population,which enriches the initial individual species characteristics.Secondly,by optimizing the energy parameter and introducing the cosine strategy,the algorithm's ability to jump out of the local optimum is enhanced,which improves the performance of the algorithm.Finally,comparison experiments with other intelligent algorithms were conducted on 13 classical test function sets.The results show that GHHO has better performance in all aspects compared to other optimization algorithms.The improved algorithm is more suitable for generalization to real optimization problems. 展开更多
关键词 Harris Hawk optimization algorithm chaotic mapping cosine strategy function optimization
下载PDF
Two-Phase Genetic Algorithm Applied in the Optimization of Multi-Modal Function 被引量:5
9
作者 Huang Yu-zhen, Kang Li-shan,Zhou Ai-minState Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei,China 《Wuhan University Journal of Natural Sciences》 CAS 2003年第S1期259-264,共6页
This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence accor... This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence according to the population size and the crossover size, so we make it run in different forms during the global and local optimization phases and then forms TPGA. The experiment results show that TPGA is very efficient for the optimization of low-dimension multi-modal functions, usually we can obtain all the global optimal solutions. 展开更多
关键词 optimization of multi-modal function genetic algorithm global optimization local optimization
下载PDF
Optimization of Bearing Locations for Maximizing First Mode Natural Frequency of Motorized Spindle-Bearing Systems Using a Genetic Algorithm 被引量:4
10
作者 Chi-Wei Lin 《Applied Mathematics》 2014年第14期2137-2152,共16页
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First... This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient. 展开更多
关键词 Optimal DESIGN Motorized SPINDLE System DESIGN Finite Element Method genetic Algorithm FIRST MODE Natural Frequency
下载PDF
Optimization of Membership Function for Fuzzy Control Based on Genetic Algorithm and Its Applications
11
作者 Shi Fei Zheng Fangjing (School of Automation) 《Advances in Manufacturing》 SCIE CAS 1998年第4期37-42,共6页
In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize... In this paper, a simple and practicable algorithm for optimization of membership function (MF) is proposed. As it is known that MF is very important in the fuzzy control. Unfortunately, to find, especially to optimize MF is always rather complex even difficult. So, to study and develop an effectual aglorithm for MF optimization is a good topic. Allow for the inner advantages of genetic algorithm (GA), it is adopted in the algorithm .The principle and executive procdeure are first presented. Then it is applied in the fuzzy control system of a typical plant. Results of real time run show that the control strategy is encouraging, and the developed algorithm is practicable. 展开更多
关键词 fuzzy control membership function (MF) genetic algorithm (GA) optimization
下载PDF
Extended Range Guided Munition Parameter Optimization Based on Genetic Algorithms
12
作者 王金柱 刘藻珍 刘敏 《Journal of Beijing Institute of Technology》 EI CAS 2005年第3期297-301,共5页
Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimize... Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimized mathematical model of ERGM maximum range with boundary conditions is created, and parameter optimization based on genetic algorithm (GA) is adopted. In the GA design, three-point crossover is used and the best chromosome is kept so that the convergence speed becomes rapid. Simulation result shows that GA is feasible, the result is good and it can be easy to attain global optimization solution, especially when the objective function is not the convex one for independent variables and it is a multi-parameter problem. 展开更多
关键词 genetic algorithm(GA) parameter optimization penalty function
下载PDF
A novel chaotic optimization algorithm and its applications
13
作者 费春国 韩正之 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第2期254-258,共5页
This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its prope... This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its property of global asymptotical convergence has been proved with Markov chains in this paper. CGA was applied to the optimization of complex benchmark functions and artificial neural network's (ANN) training. In solving the complex benchmark functions,CGA needs less iterative number than GA and other chaotic optimization algorithms and always finds the optima of these functions. In training ANN,CGA uses less iterative number and shows strong generalization. It is proved that CGA is an efficient and convenient chaotic optimization algorithm. 展开更多
关键词 chaotic optimization chaos-genetic algorithms (CGA) genetic algorithms neural network.
下载PDF
Application of Chaos in Genetic Algorithms 被引量:14
14
作者 YANG Li-Jiang CHEN Tian-Lun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2002年第8期168-172,共5页
Through replacing Gaussian mutation operator in real-coded genetic algorithm with a chaotic mapping, wepresent a genetic algorithm with chaotic mutation. To examine this new algorithm, we applied our algorithm to func... Through replacing Gaussian mutation operator in real-coded genetic algorithm with a chaotic mapping, wepresent a genetic algorithm with chaotic mutation. To examine this new algorithm, we applied our algorithm to functionoptimization problems and obtained good results. Furthermore the orbital points' distribution of chaotic mapping andthe effects of chaotic mutation with different parameters were studied in order to make the chaotic mutation mechanismbe utilized efficiently. 展开更多
关键词 genetic algorithms chaos function optimization
下载PDF
Multiobjective optimization and multivariable control of the beer fermentation process with the use of evolutionary algorithms 被引量:7
15
作者 ANDRES-TOROB. GIRON-SIERRAJ.M. FERNANDEZ-BLANCOP. LOPEZ-OROZCOJ.A. BESADA-PORTASE. 《Journal of Zhejiang University Science》 CSCD 2004年第4期378-389,共12页
This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathe... This paper describes empirical research on the model, optimization and supervisory control of beer fermentation.Conditions in the laboratory were made as similar as possible to brewery industry conditions. Since mathematical models that consider realistic industrial conditions were not available, a new mathematical model design involving industrial conditions was first developed. Batch fermentations are multiobjective dynamic processes that must be guided along optimal paths to obtain good results.The paper describes a direct way to apply a Pareto set approach with multiobjective evolutionary algorithms (MOEAs).Successful finding of optimal ways to drive these processes were reported.Once obtained, the mathematical fermentation model was used to optimize the fermentation process by using an intelligent control based on certain rules. 展开更多
关键词 Multiobjective optimization genetic algorithms Industrial control Multivariable control systems Fermenta- tion processes
下载PDF
Multi-objective modeling and optimization for scheduling of cracking furnace systems 被引量:8
16
作者 Peng Jiang Wenli Du 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第8期992-999,共8页
Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multip... Cracking furnace is the core device for ethylene production. In practice, multiple ethylene furnaces are usually run in parallel. The scheduling of the entire cracking furnace system has great significance when multiple feeds are simultaneously processed in multiple cracking furnaces with the changing of operating cost and yield of product. In this paper, given the requirements of both profit and energy saving in actual production process, a multi-objective optimization model contains two objectives, maximizing the average benefits and minimizing the average coking amount was proposed. The model can be abstracted as a multi-objective mixed integer non- linear programming problem. Considering the mixed integer decision variables of this multi-objective problem, an improved hybrid encoding non-dominated sorting genetic algorithm with mixed discrete variables (MDNSGA-II) is used to solve the Pareto optimal front of this model, the algorithm adopted crossover and muta- tion strategy with multi-operators, which overcomes the deficiency that normal genetic algorithm cannot handle the optimization problem with mixed variables. Finally, using an ethylene plant with multiple cracking furnaces as an example to illustrate the effectiveness of the scheduling results by comparing the optimization results of multi-objective and single objective model. 展开更多
关键词 Cracking furnace systems Feed scheduling Multi-objective mixed integer nonlinear optimization genetic algorithm
下载PDF
Ant colony algorithm based on genetic method for continuous optimization problem 被引量:1
17
作者 朱经纬 蒙培生 王乘 《Journal of Shanghai University(English Edition)》 CAS 2007年第6期597-602,共6页
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of componen... A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions. 展开更多
关键词 ant colony algorithm genetic method diffusion function continuous optimization problem.
下载PDF
An Improved Catastrophic Genetic Algorithm and Its Application in Reactive Power Optimization 被引量:4
18
作者 Ouyang Sen 《Energy and Power Engineering》 2010年第4期306-312,共7页
This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed... This paper presents an Improved Catastrophic Genetic Algorithm (ICGA) for optimal reactive power optimization. Firstly, a new catastrophic operator to enhance the genetic algorithms’ convergence stability is proposed. Then, a new probability algorithm of crossover depending on the number of generations, and a new probability algorithm of mutation depending on the fitness value are designed to solving the main conflict of the convergent speed with the global astringency. In these ways, the ICGA can prevent premature convergence and instability of genetic-catastrophic algorithms (GCA). Finally, the ICGA is applied for power system reactive power optimization and evaluated on the IEEE 14-bus power system, and the application results show that the proposed method is suitable for reactive power optimization in power system. 展开更多
关键词 genetic algorithms REACTIVE POWER optimization CATASTROPHE POWER System
下载PDF
Design of Radial Basis Function Network Using Adaptive Particle Swarm Optimization and Orthogonal Least Squares 被引量:1
19
作者 Majid Moradi Zirkohi Mohammad Mehdi Fateh Ali Akbarzade 《Journal of Software Engineering and Applications》 2010年第7期704-708,共5页
This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Le... This paper presents a two-level learning method for designing an optimal Radial Basis Function Network (RBFN) using Adaptive Velocity Update Relaxation Particle Swarm Optimization algorithm (AVURPSO) and Orthogonal Least Squares algorithm (OLS) called as OLS-AVURPSO method. The novelty is to develop an AVURPSO algorithm to form the hybrid OLS-AVURPSO method for designing an optimal RBFN. The proposed method at the upper level finds the global optimum of the spread factor parameter using AVURPSO while at the lower level automatically constructs the RBFN using OLS algorithm. Simulation results confirm that the RBFN is superior to Multilayered Perceptron Network (MLPN) in terms of network size and computing time. To demonstrate the effectiveness of proposed OLS-AVURPSO in the design of RBFN, the Mackey-Glass Chaotic Time-Series as an example is modeled by both MLPN and RBFN. 展开更多
关键词 RADIAL BASIS function Network ORTHOGONAL Least SQUARES Algorithm Particle SWARM optimization Mackey-Glass chaotic Time-Series
下载PDF
Genetic-algorithm-based balanced distribution of functional characteristics for machines
20
作者 王国新 杜景军 阎艳 《Journal of Beijing Institute of Technology》 EI CAS 2015年第1期49-57,共9页
In order to make reconfigurable manufacturing system (RMS) adapt to the fluctuations of production demand with the minimum number of reconflgurations in its full life cycle, we presented a method to design RMS based... In order to make reconfigurable manufacturing system (RMS) adapt to the fluctuations of production demand with the minimum number of reconflgurations in its full life cycle, we presented a method to design RMS based on the balanced distribution of functional characteristics for ma- chines. With this method, functional characteristics were classified based on machining functions of cutting-tools and machining accuracy of machines. Then the optimization objective was set as the to- tal shortest mobile distance that all the workpieces are moved from one machine to another, and an improved genetic algorithm (GA) was proposed to optimize the configuration. The elitist strategy was used to enhance the global optimization ability of GA, and excellent gene pool was designed to maintain the diversity of population. Software Matlab was used to realize the algorithm, and a case study of simulation was used to evaluate the method. 展开更多
关键词 reconfigurable manufacturing systems balanced distribution functional characteristics genetic algorithm
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部