Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurizat...Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurization(WFGD) process, as well as the effect of desulfurization parameters, were investigated in an experimental system equipped with a simulated SCR flue gas generation system and a limestone-based WFGD system.The results indicate that the ammonium sulfate aerosols and ammonia slip in the flue gas from SCR can be partly removed by slurry scrubbing, while the entrainment and evaporation of desulfurization slurry with accumulated NH4+will generate new ammoniumcontaining particles and gaseous ammonia.The ammonium-containing particles formed by desulfurization are not only derived from the entrainment of slurry droplets, but also from the re-condensation of gaseous ammonia generated by slurry evaporation.Therefore,even if the concentration of NH4+in the desulfurization slurry is quite low, a high level of NH4+was still contained in the fine particles at the outlet of the scrubber.When the accumulated NH4+in the desulfurization slurry was high enough, the WFGD system promoted the conversion of NH3 to NH4+and increased the additional emission of primary NH4+aerosols.With the decline of the liquid/gas ratio and flue gas temperature, the removal efficiency of ammonia sulfate aerosols increased, and the NH4+emitted from entrainment and evaporation of the desulfurization slurry decreased.In addition, the volatile ammonia concentration after the WFGD system was reduced with the decrease of the NH4+concentration and p H values of the slurry.展开更多
The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 conc...The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 concentration,SO4^2-and other different components of Bayer red mud on desulfurization were conducted.The mechanism of flue gas desulfurization was also established.The results indicated that L/S was the prominent factor,followed by the inlet SO2 concentration and the temperature was the least among them.The optimum condition was as follows:L/S,the temperature and the SO2 concentration were 20:1,25℃and 1000 mg/m^3,respectively,under the gas flow of 1.5 L/min.The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%.The accumulation of SO4^2-inhibited the desulfurization efficiency.The alkali absorption and metal ions liquid catalytic oxidation were involved in the process,which accounted for 98.61%.展开更多
为了降低重油催化裂化(RFCC)装置再生烟气中SO 2的含量,以减轻后续烟气脱硫除尘装置的处理负荷,中国石化广州分公司采取投加RFS09硫转移剂的方法来降低烟气脱硫除尘装置入口的SO 2浓度。工业应用结果表明:投用硫转移剂后,再生烟气中SO ...为了降低重油催化裂化(RFCC)装置再生烟气中SO 2的含量,以减轻后续烟气脱硫除尘装置的处理负荷,中国石化广州分公司采取投加RFS09硫转移剂的方法来降低烟气脱硫除尘装置入口的SO 2浓度。工业应用结果表明:投用硫转移剂后,再生烟气中SO 2浓度明显降低,含硫外排水COD下降,烟气脱硫除尘装置入口烟气SO 2质量浓度由3.56 g m 3降至2.28 g m 3;硫转移剂的使用并未对汽油、液化气等主要产品的收率及平衡剂质量造成不利影响。展开更多
基金supported by the National Natural Science Foundation of China(Nos.51576039 and 51576039).
文摘Selective catalytic reduction(SCR) denitration may increase the emission of NH4+and NH3.The removal and transformation characteristics of ammonium sulfate aerosols and ammonia slip during the wet flue gas desulfurization(WFGD) process, as well as the effect of desulfurization parameters, were investigated in an experimental system equipped with a simulated SCR flue gas generation system and a limestone-based WFGD system.The results indicate that the ammonium sulfate aerosols and ammonia slip in the flue gas from SCR can be partly removed by slurry scrubbing, while the entrainment and evaporation of desulfurization slurry with accumulated NH4+will generate new ammoniumcontaining particles and gaseous ammonia.The ammonium-containing particles formed by desulfurization are not only derived from the entrainment of slurry droplets, but also from the re-condensation of gaseous ammonia generated by slurry evaporation.Therefore,even if the concentration of NH4+in the desulfurization slurry is quite low, a high level of NH4+was still contained in the fine particles at the outlet of the scrubber.When the accumulated NH4+in the desulfurization slurry was high enough, the WFGD system promoted the conversion of NH3 to NH4+and increased the additional emission of primary NH4+aerosols.With the decline of the liquid/gas ratio and flue gas temperature, the removal efficiency of ammonia sulfate aerosols increased, and the NH4+emitted from entrainment and evaporation of the desulfurization slurry decreased.In addition, the volatile ammonia concentration after the WFGD system was reduced with the decrease of the NH4+concentration and p H values of the slurry.
基金Project(2017YFC0210500)supported by the National Key Technology R&D Program of ChinaProject(2017ACA092)supported by the Major Projects of Technical Innovation in Hubei Province,China
文摘The absorbent composing of Bayer red mud and water was prepared and applied to removing SO2 from flue gas.Effects of the ratio of liquid to solid(L/S),the absorption temperature,the inlet SO2 concentration,the O2 concentration,SO4^2-and other different components of Bayer red mud on desulfurization were conducted.The mechanism of flue gas desulfurization was also established.The results indicated that L/S was the prominent factor,followed by the inlet SO2 concentration and the temperature was the least among them.The optimum condition was as follows:L/S,the temperature and the SO2 concentration were 20:1,25℃and 1000 mg/m^3,respectively,under the gas flow of 1.5 L/min.The desulfurization efficiency was not significantly influenced when O2 concentration was above 7%.The accumulation of SO4^2-inhibited the desulfurization efficiency.The alkali absorption and metal ions liquid catalytic oxidation were involved in the process,which accounted for 98.61%.
文摘为了降低重油催化裂化(RFCC)装置再生烟气中SO 2的含量,以减轻后续烟气脱硫除尘装置的处理负荷,中国石化广州分公司采取投加RFS09硫转移剂的方法来降低烟气脱硫除尘装置入口的SO 2浓度。工业应用结果表明:投用硫转移剂后,再生烟气中SO 2浓度明显降低,含硫外排水COD下降,烟气脱硫除尘装置入口烟气SO 2质量浓度由3.56 g m 3降至2.28 g m 3;硫转移剂的使用并未对汽油、液化气等主要产品的收率及平衡剂质量造成不利影响。