The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs ami...The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.展开更多
For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the...For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.展开更多
Discrete curves are composed of a set of ordered discrete points distributed at the intersection of the scanning plane and the surface of the object. In order to accurately calculate the geometric characteristics of a...Discrete curves are composed of a set of ordered discrete points distributed at the intersection of the scanning plane and the surface of the object. In order to accurately calculate the geometric characteristics of any point on the discrete curve, a distance-based Gaussian weighted algorithm is proposed to estimate the geometric characteristics of three-dimensional space discrete curves. According to the definition of discrete derivatives, the algorithm fully considers the relative position difference between a specific point and its neighboring points, introduces the distance weighting idea, and integrates the smoothing strategy. The experiment uses two spatial discrete curves for uniform and non-uniform sampling, and compares them with two commonly used estimation algorithms. The comparative analysis is carried out in terms of sampling density, neighborhood radius and noise resistance. The experimental results show that the Gaussian distance weighted algorithm is effective and provides an efficient algorithm for underground pipeline safety detection.展开更多
The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve...The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve (SWCC) that represents the relationship between matric suction and moisture content. In this study, a full-automatic rapid stress-dependent SWCC pressure-plate extractor was developed. Then, the influences of overburden stress and degree of compaction on the SWCC of subgrade soil such as high liquid limit silt (MH) and low liquid limit clay (CL) were analyzed. Accordingly, a new model taking into account the influences of overburden stress and degree of compaction based on the well-known Van Genuchten (VG) SWCC fitting model was presented and validated. The results show that with the increase of the degree of compaction and overburden stress, the saturated moisture content of subgrade soil decreases, while the air-entry value increases and the transition section curve becomes flat. The influences of the degree of compaction and overburden stress on the SWCC of MH is greater than that of CL. Meanwhile, there was a satisfactory agreement between the prediction and measurement, indicating a good performance of the new model for predicting the SWCC.展开更多
Based on five types of conventional logging curves including GR,RLLD,CNL,DEN and AC,and 39 core samples from 30 representative boreholes,the logging characteristics and lithofacies and sub-facies of the basaltic rocks...Based on five types of conventional logging curves including GR,RLLD,CNL,DEN and AC,and 39 core samples from 30 representative boreholes,the logging characteristics and lithofacies and sub-facies of the basaltic rocks were studied.Three basaltic facies and four sub-facies are recognized from the well logs,includ-ing volcanic conduit facies(post intrusive sub-facies),explosive facies,and effusive lava flow facies(tabular flow,compound flow and hyaloclastite sub-facies).The post intrusive,tabular flow and compound flow sub-facies logging curves are mainly controlled by the distribution of vesiculate zones and vesiculate content,which are characterized by four curves with good correlation.Post intrusive sub-facies are characterized by high RLLD,high DEN,with a micro-dentate logging curve pattern,abrupt contact relationships at the top and base.Tabular flow sub-facies are characterized by high RLLD,high DEN,with a bell-shaped log curve pattern,abrupt contact at the base and gradational contact at the top.Compound flow sub-facies are characterized by medium-low RLLD,with a micro-dentate or finger-like logging curve pattern,abrupt contact at the base and gradational contact at the top.Explosive facies and hyaloclastite sub-facies logging curves are mainly controlled by the distribution of the size and sorting of rock particles,which can be recognized by four kinds of logging curves with poor cor-relation.Explosive facies are characterized by low RLLD,medium-low CNL and low DEN,with a micro-dentate logging curve pattern.Hyaloclastite sub-facies are characterized by low RLLD,high CNL,low DEN and high AC,with a micro-dentate logging curve pattern.The present research is beneficial for the prediction of basaltic reser-voirs not only in the Liaohe depression but also in the other volcanic-sedimentary basins.展开更多
Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and de...Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.展开更多
Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between di...Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.展开更多
Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of...Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of liner parameters(wall thickness,material),charge aspect ratio,and stand-off distance on the movement characteristics of JPC in water.The findings reveal that the head diameter of the JPC increases and experiences significant erosion after entering the water,the effective length of the JPC in water undergoes two distinct phases:a growth phase and a decrease phase,with the velocity of the JPC decaying exponentially.Increasing the liner thickness,stand-off distance and the charge aspect ratio can improve the erosion resistance and the velocity retention capacity of the JPC.The optimal ranges for liner thickness and stand-off distance are 0.0363D_(k) to 0.0545D_(k)(D_(k) is the charge diameter),the stand-off distance should be within 1.0D_(k).After the charge aspect ratio higher than 1.25,the charge structure exerts minimal influence the movement characteristics of the JPC in water.Material density plays a crucial role in the velocity decay pattern of the JPC during penetration.JPC with higher densities exhibit superior velocity retention capabilities in water,with the velocity decay pattern converging if the densities are similar.Consequently,copper,tantalum and tungsten liners are deemed appropriate for underwater shaped charge warhead.Finally,the results will provide an important reference for the design of underwater shaped charge warhead.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distin...BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.展开更多
To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system...To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor.展开更多
Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied fo...Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores.展开更多
Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landsli...Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.展开更多
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal...Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.展开更多
The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and tempora...The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.展开更多
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.展开更多
A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impac...A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.展开更多
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons...Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.展开更多
The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scann...The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.展开更多
Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resista...Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51979002)the Fundamental Research Funds for the Central Universities(Grant No.2022YJS080).
文摘The soil freezing characteristic curve(SFCC)plays a fundamental role in comprehending thermohydraulic behavior and numerical simulation of frozen soil.This study proposes a dynamic model to uniformly express SFCCs amidst varying total water contents throughout the freezing-thawing process.Firstly,a general model is proposed,wherein the unfrozen water content at arbitrary temperature is determined as the lesser of the current total water content and the reference value derived from saturated SFCC.The dynamic performance of this model is verified through test data.Subsequently,in accordance with electric double layer(EDL)theory,the theoretical residual and minimum temperatures in SFCC are calculated to be-14.5℃to-20℃for clay particles and-260℃,respectively.To ensure that the SFCC curve ends at minimum temperature,a correction function is introduced into the general model.Furthermore,a simplified dynamic model is proposed and investigated,necessitating only three parameters inherited from the general model.Additionally,both general and simplified models are evaluated based on a test database and proven to fit the test data exactly across the entire temperature range.Typical recommended parameter values for various types of soils are summarized.Overall,this study provides not only a theoretical basis for most empirical equations but also proposes a new and more general equation to describe the SFCC.
基金supported by the National Natural Science Foundation of China(62033010)Qing Lan Project of Jiangsu Province(R2023Q07)。
文摘For accurately identifying the distribution charac-teristic of Gaussian-like noises in unmanned aerial vehicle(UAV)state estimation,this paper proposes a non-parametric scheme based on curve similarity matching.In the framework of the pro-posed scheme,a Parzen window(kernel density estimation,KDE)method on sliding window technology is applied for roughly esti-mating the sample probability density,a precise data probability density function(PDF)model is constructed with the least square method on K-fold cross validation,and the testing result based on evaluation method is obtained based on some data characteristic analyses of curve shape,abruptness and symmetry.Some com-parison simulations with classical methods and UAV flight exper-iment shows that the proposed scheme has higher recognition accuracy than classical methods for some kinds of Gaussian-like data,which provides better reference for the design of Kalman filter(KF)in complex water environment.
文摘Discrete curves are composed of a set of ordered discrete points distributed at the intersection of the scanning plane and the surface of the object. In order to accurately calculate the geometric characteristics of any point on the discrete curve, a distance-based Gaussian weighted algorithm is proposed to estimate the geometric characteristics of three-dimensional space discrete curves. According to the definition of discrete derivatives, the algorithm fully considers the relative position difference between a specific point and its neighboring points, introduces the distance weighting idea, and integrates the smoothing strategy. The experiment uses two spatial discrete curves for uniform and non-uniform sampling, and compares them with two commonly used estimation algorithms. The comparative analysis is carried out in terms of sampling density, neighborhood radius and noise resistance. The experimental results show that the Gaussian distance weighted algorithm is effective and provides an efficient algorithm for underground pipeline safety detection.
基金supported by the National Natural Science Foundation of China(Grant No.52208419)Science and Technology Innovation Program of Hunan Province,China(Grant No.2022RC1030)Project of Scientific Research of Hunan Provincial Department of Education,China(Grant No.21C0187).
文摘The subgrade soil is generally in saturated or unsaturated condition. To analyze complex thermo-hydro-mechanical-chemical (THMC) behaviors of subgrade, it is essential to determine the soil–water characteristic curve (SWCC) that represents the relationship between matric suction and moisture content. In this study, a full-automatic rapid stress-dependent SWCC pressure-plate extractor was developed. Then, the influences of overburden stress and degree of compaction on the SWCC of subgrade soil such as high liquid limit silt (MH) and low liquid limit clay (CL) were analyzed. Accordingly, a new model taking into account the influences of overburden stress and degree of compaction based on the well-known Van Genuchten (VG) SWCC fitting model was presented and validated. The results show that with the increase of the degree of compaction and overburden stress, the saturated moisture content of subgrade soil decreases, while the air-entry value increases and the transition section curve becomes flat. The influences of the degree of compaction and overburden stress on the SWCC of MH is greater than that of CL. Meanwhile, there was a satisfactory agreement between the prediction and measurement, indicating a good performance of the new model for predicting the SWCC.
文摘Based on five types of conventional logging curves including GR,RLLD,CNL,DEN and AC,and 39 core samples from 30 representative boreholes,the logging characteristics and lithofacies and sub-facies of the basaltic rocks were studied.Three basaltic facies and four sub-facies are recognized from the well logs,includ-ing volcanic conduit facies(post intrusive sub-facies),explosive facies,and effusive lava flow facies(tabular flow,compound flow and hyaloclastite sub-facies).The post intrusive,tabular flow and compound flow sub-facies logging curves are mainly controlled by the distribution of vesiculate zones and vesiculate content,which are characterized by four curves with good correlation.Post intrusive sub-facies are characterized by high RLLD,high DEN,with a micro-dentate logging curve pattern,abrupt contact relationships at the top and base.Tabular flow sub-facies are characterized by high RLLD,high DEN,with a bell-shaped log curve pattern,abrupt contact at the base and gradational contact at the top.Compound flow sub-facies are characterized by medium-low RLLD,with a micro-dentate or finger-like logging curve pattern,abrupt contact at the base and gradational contact at the top.Explosive facies and hyaloclastite sub-facies logging curves are mainly controlled by the distribution of the size and sorting of rock particles,which can be recognized by four kinds of logging curves with poor cor-relation.Explosive facies are characterized by low RLLD,medium-low CNL and low DEN,with a micro-dentate logging curve pattern.Hyaloclastite sub-facies are characterized by low RLLD,high CNL,low DEN and high AC,with a micro-dentate logging curve pattern.The present research is beneficial for the prediction of basaltic reser-voirs not only in the Liaohe depression but also in the other volcanic-sedimentary basins.
基金Supported by the National Natural Science Foundation of China,No.81900533Science and Technology Project of Henan Science and Technology Department,No.232102520032。
文摘Autophagy is a cellular catabolic process characterized by the formation of double-membrane autophagosomes.Transmission electron microscopy is the most rigorous method to clearly visualize autophagic engulfment and degradation.A large number of studies have shown that autophagy is closely related to the digestion,secretion,and regeneration of gastrointestinal(GI)cells.However,the role of autophagy in GI diseases remains controversial.This article focuses on the morphological and biochemical characteristics of autophagy in GI diseases,in order to provide new ideas for their diagnosis and treatment.
基金supported by the National Natural Science Foun-dation of China(Grant Nos.12002073 and 12372122)the National Key Research and Development Plan of China(Grant No.2020YFB 1709401)+2 种基金the Science Technology Plan of Liaoning Province(Grant No.2023JH2/101600044)the Liaoning Revitalization Talents Pro-gram(Grant No.XLYC2001003)111 Project of China(Grant No.B14013).
文摘Besides exhibiting excellent capabilities such as energy absorption,phase-transforming metamaterials offer a vast design space for achieving nonlinear constitutive relations.This is facilitated by switching between different patterns under deformation.However,the related inverse design problem is quite challenging,due to the lack of appropriate mathematical formulation and the convergence issue in the post-buckling analysis of intermediate designs.In this work,periodic unit cells are explicitly described by the moving morphable voids method and effectively analyzed by eliminating the degrees of freedom in void regions.Furthermore,by exploring the Pareto frontiers between error and cost,an inverse design formulation is proposed for unit cells.This formulation aims to achieve a prescribed constitutive curve and is validated through numerical examples and experimental results.The design approach presented here can be extended to the inverse design of other types of mechanical metamaterials with prescribed nonlinear effective properties.
基金supported by the National Natural Science Foundation of China(Grant No.11672278)。
文摘Shaped charge warhead is important for enhancing the damage performance of underwater weapons.This paper used finite element analysis software and based on JPC water penetration experiments to examine the influence of liner parameters(wall thickness,material),charge aspect ratio,and stand-off distance on the movement characteristics of JPC in water.The findings reveal that the head diameter of the JPC increases and experiences significant erosion after entering the water,the effective length of the JPC in water undergoes two distinct phases:a growth phase and a decrease phase,with the velocity of the JPC decaying exponentially.Increasing the liner thickness,stand-off distance and the charge aspect ratio can improve the erosion resistance and the velocity retention capacity of the JPC.The optimal ranges for liner thickness and stand-off distance are 0.0363D_(k) to 0.0545D_(k)(D_(k) is the charge diameter),the stand-off distance should be within 1.0D_(k).After the charge aspect ratio higher than 1.25,the charge structure exerts minimal influence the movement characteristics of the JPC in water.Material density plays a crucial role in the velocity decay pattern of the JPC during penetration.JPC with higher densities exhibit superior velocity retention capabilities in water,with the velocity decay pattern converging if the densities are similar.Consequently,copper,tantalum and tungsten liners are deemed appropriate for underwater shaped charge warhead.Finally,the results will provide an important reference for the design of underwater shaped charge warhead.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金Supported by Xi’an Health Commission Residential Training Base Construction Project,No.2023zp09.
文摘BACKGROUND Acute non-variceal upper gastrointestinal bleeding(ANVUGIB)constitutes a prevalent emergency within Gastroenterology,encompassing 80%-90%of all gastrointestinal hemorrhage incidents.This condition is distinguished by its abrupt onset,swift progression,and notably elevated mortality rate.AIM To gather clinical data from patients with ANVUGIB at our hospital in order to elucidate the clinical characteristics specific to our institution and analyze the therapeutic effectiveness of endoscopic hemostasis.METHODS We retrospectively retrieved the records of 532 patients diagnosed with ANVUGIB by endoscopy at our hospital between March 2021 and March 2023,utilizing our medical record system.Data pertaining to general patient information,etiological factors,disease outcomes,and other relevant variables were meticulously collected and analyzed.RESULTS Among the 532 patients diagnosed with ANVUGIB,the male-to-female ratio was 2.91:1,with a higher prevalence among males.Notably,43.6%of patients presented with black stool as their primary complaint,while 27.4%had hematemesis as their initial symptom.Upon admission,17%of patients exhibited both hematemesis and black stool,while most ANVUGIB patients primarily complained of overt gastrointestinal bleeding.Urgent routine blood examinations at admission revealed that 75.8%of patients had anemia,with 63.4%experiencing moderate to severe anemia,and 1.5%having extremely severe anemia(hemoglobin<30 g/L).With regard to etiology,53.2%of patients experienced bleeding without a definitive trigger,24.2%had a history of using gastric mucosa-irritating medications,24.2%developed bleeding after alcohol consumption,2.8%attributed it to improper diet,1.7%to emotional excitement,and 2.3%to fatigue preceding the bleeding episode.Drug-induced ANVUGIB was more prevalent in the elderly than middle-aged and young individuals,while bleeding due to alcohol consumption showed the opposite trend.Additionally,diet-related bleeding was more common among the young age group compared to the middle-aged group.Gastrointestinal endoscopy identified peptic ulcers as the most frequent cause of ANVUGIB(73.3%),followed by gastrointestinal malignancies(10.9%),acute gastric mucous lesions(9.8%),and androgenic upper gastrointestinal bleeding(1.5%)among inpatients with ANVUGIB.Of the 532 patients with gastrointestinal bleeding,68 underwent endoscopic hemostasis,resulting in an endoscopic treatment rate of 12.8%,with a high immediate hemostasis success rate of 94.1%.
基金support from the National Natural Science Foundation of China(No.41941018,No.52074299)the Fundamental Research Funds for the Central Universities(No.2023JCCXSB02)the China Geological Survey Project(DD20221816,DD20211376)are gratefully acknowledged.
文摘To investigate the influence mechanism of geostress on rockburst characteristics,three groups of gneiss rockburst experiments were conducted under different initial geostress conditions.A high-speed photography system and acoustic emission(AE)monitoring system were used to monitor the entire rockburst process in real time.The experimental results show that when the initial burial depth increases from 928 m to 1320 m,the proportion of large fracture scale in rockburst increases by 154.54%,and the AE energy increases by 565.63%,reflecting that the degree and severity of rockburst increase with the increase of burial depth.And then,two mechanisms are proposed to explain this effect,including(i)the increase of initial geostress improves the energy storage capacity of gneiss,and then,the excess energy which can be converted into kinetic energy of debris ejection increases,consequently,a more pronounced violent ejection phenomenon is observed at rockburst;(ii)the increase of initial geostress causes more sufficient plate cracks of gneiss after unloading ofσh,which provides a basis for more severe ejection of rockburst.What’s more,a precursor with clear physical meaning for rockburst is proposed under the framework of dynamic response process of crack evolution.Finally,potential value in long term rockburst warning of the precursor obtained in this study is shown via the comparison of conventional precursor.
基金supported by the National Key Research and Development Program of China (Grant No.2022YFE0104500)the National Natural Science Foundation of China (Grant No. 52271271)+2 种基金the National Natural Science Foundation of China (Grant No. 41906183)the National Natural Science Foundation of China (Grant No.52101308)the Fundamental Research Funds for the Central Universities (Grant No.B220202080)。
文摘Tidal bore is a special and intensive form of flow movement induced by tidal effect in estuary areas, which has complex characteristics of profile, propagation and flow velocity. Although it has been widely studied for the generation mechanism, propagation features and influencing factors, the curved channel will complicate the characteristics of tidal bore propagation, which need further investigation compared with straight channel. In this study, the flume experiments for both undular and breaking bores’ propagation in curved channel are performed to measure the freesurface elevation and flow velocity by ultrasonic sensors and ADV respectively. The propagation characteristics,including tidal bore height, cross-section surface gradient, tidal bore propagation celerity, and flow velocity are obtained for both sides of the curved channel. And three bore intensities are set for each type of tidal bores. The freesurface gradients are consistently enlarged in high-curvature section for undular and breaking bores, but have distinct behaviors in low-curvature section. The spatial distributions of tidal bore propagation celerity and flow velocity are compared between concave and convex banks. This work will provide experimental reference for engineering design of beach and seawall protection, erosion reduction and siltation promotion in estuary areas with the existence of tidal bores.
基金supported by the Natural Science Foundation of Shandong Province,China(Grant No.ZR2021QD032)。
文摘Since the impoundment of Three Gorges Reservoir(TGR)in 2003,numerous slopes have experienced noticeable movement or destabilization owing to reservoir level changes and seasonal rainfall.One case is the Outang landslide,a large-scale and active landslide,on the south bank of the Yangtze River.The latest monitoring data and site investigations available are analyzed to establish spatial and temporal landslide deformation characteristics.Data mining technology,including the two-step clustering and Apriori algorithm,is then used to identify the dominant triggers of landslide movement.In the data mining process,the two-step clustering method clusters the candidate triggers and displacement rate into several groups,and the Apriori algorithm generates correlation criteria for the cause-and-effect.The analysis considers multiple locations of the landslide and incorporates two types of time scales:longterm deformation on a monthly basis and short-term deformation on a daily basis.This analysis shows that the deformations of the Outang landslide are driven by both rainfall and reservoir water while its deformation varies spatiotemporally mainly due to the difference in local responses to hydrological factors.The data mining results reveal different dominant triggering factors depending on the monitoring frequency:the monthly and bi-monthly cumulative rainfall control the monthly deformation,and the 10-d cumulative rainfall and the 5-d cumulative drop of water level in the reservoir dominate the daily deformation of the landslide.It is concluded that the spatiotemporal deformation pattern and data mining rules associated with precipitation and reservoir water level have the potential to be broadly implemented for improving landslide prevention and control in the dam reservoirs and other landslideprone areas.
基金financially supported by National Natural Science Foundation of China(No.52274171)Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining Fund(No.EC2023015)+1 种基金Excellent Youth Project of Universities in Anhui Province(No.2023AH030042)Unveiled List of Bidding Projects of Shanxi Province(No.20201101001)。
文摘Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology.
基金National Natural Science Foundation of China(No.52178393)2023 High-level Talent Research Project from Yancheng Institute of Technology(No.xjr2023019)+1 种基金Open Fund Project of Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering(Grant No.YT202302)Science and Technology Innovation Team of Shaanxi Innovation Capability Support Plan(No.2020TD005).
文摘The deformation in sedimentary rock induced by train loads has potential threat to the safe operation of tunnels. This study investigated the influence of stratification structure on the infrared radiation and temporal damage mechanism of hard siltstone. The uniaxial compression tests, coupled with acoustic emission(AE) and infrared radiation temperature(IRT) were conducted on siltstones with different stratification effects. The results revealed that the stratigraphic structure significantly affects the stress-strain response and strength degradation characteristics. The mechanical parameters exhibit anisotropy characteristics, and the stratification effect exhibits a negative correlation with the cracking stress and peak stress. The failure modes caused by the stratification effect show remarkable anisotropic features, including splitting failure(Ⅰ: 0°-22.50°, Ⅱ: 90°), composite failure(45°), and shearing failure(67.50°). The AE temporal sequences demonstrate a stepwise response characteristic to the loading stress level. The AE intensity indicates that the stress sensitivity of shearing failure and composite failure is generally greater than that of splitting failure. The IRT field has spatiotemporal migration and progressive dissimilation with stress loading and its dissimilation degree increases under higher stress levels. The stronger the stratification effect, the greater the dissimilation degree of the IRT field. The abnormal characteristic points of average infrared radiation temperature(AIRT) variance at local stress drop and peak stress can be used as early and late precursors to identify fracture instability. Theoretical analysis shows that the competitive relationship between compaction strengthening and fracturing damage intensifies the dissimilation of the infrared thermal field for an increasing stress level. The present study provides a theoretical reference for disaster warnings in hard sedimentary rock mass.
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.
基金supported by the Program for National Defense Science and Technology Foundation Strengtheningthe Youth Foundation of Rocket Force University of Engineering(Grant No.2021QN-B014)。
文摘A submerged cavitation water jet(SCWJ)is an effective method to recycle solid propellant from obsolete solid engines by the breaking method.Solid propellant's breaking modes and mechanical process under SCWJ impact are unclear.This study aims to understand those impact breaking mechanisms.The hydroxyl-terminated polybutadiene(HTPB)propellant was chosen as the research material,and a self-designed test system was used to conduct impact tests at four different working pressures.The high-speed camera characterized crack propagation,and the DIC method calculated strain change during the impact process.Besides,micro and macro fracture morphologies were characterized by scanning electron microscope(SEM)and computed tomography(CT)scanning.The results reveal that the compressive strain concentration region locates right below the nozzle,and the shear strain region distributes symmetrically with the jet axis,which increases to 4% at first 16th ms,the compressive strain rises to 2% and 6% in the axial and transverse direction,respectively.The two tensile cracks formed first at the compression strain concentrate region,and there generate many shear cracks around the tensile cracks,and those shear cracks that develop and aggregate cause the cracks to become wider and cut through the tensile cracks,forming the tensile-shear cracks and the impact parts eventually fail.The HTPB propellant forms a breaking hole shaped conical after impact 10 s.The mass loss increases by 17 times at maximum,with the working pressure increasing by three times.Meanwhile,the damage value of the breaking hole remaining on the surface increases by 7.8 times while 2.9 times in the depth of the breaking hole.The breaking efficiency is closely affected by working pressures.The failure modes of HTPB impacted by SCWJ are classified as tensile crack-dominated and tensile-shear crack-dominated damage mechanisms.
基金National Natural Science Foundation of China under Grant No.52278503。
文摘Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments.
基金supported by the National Natural Science Foundation of China under Grants Nos.52165013 and 51565021.
文摘The meso-dynamical behaviour of a high-speed rail ballast bed with under sleeper pads(USPs)was studied.The geometrically irregular refined discrete element model of the ballast particles was constructed using 3D scanning techniques,and the 3D dynamic model of the rail-sleeper-ballast bed was constructed using the coupled discrete element method-multiflexible-body dynamics(DEM-MFBD)approach.We analyse the meso-mechanical dynamics of the ballast bed with USPs under dynamic load on a train and verify the correctness of the model in laboratory tests.It is shown that the deformation of the USPs increases the contact area between the sleeper and the ballast particles,and subsequently the number of contacts between them.As the depth of the granular ballast bed increases,the contact area becomes larger,and the contact force between the ballast particles gradually decreases.Under the action of the elastic USPs,the contact forces between ballast particles are reduced and the overall vibration level of the ballast bed can be reduced.The settlement of the granular ballast bed occurs mainly at the shallow position of the sleeper bottom,and the installation of the elastic USPs can be effective in reducing the stress on the ballast particles and the settlement of the ballast bed.
基金funded by the Science and Technology Research and Development Plan of the China State Railway Group Company Limited(No.N2023J053).
文摘Purpose–The type 120 emergency valve is an essential braking component of railway freight trains,butcorresponding diaphragms consisting of natural rubber(NR)and chloroprene rubber(CR)exhibit insufficientaging resistance and low-temperature resistance,respectively.In order to develop type 120 emergency valverubber diaphragms with long-life and high-performance,low-temperatureresistant CR and NR were processed.Design/methodology/approach–The physical properties of the low-temperature-resistant CR and NRwere tested by low-temperature stretching,dynamic mechanical analysis,differential scanning calorimetryand thermogravimetric analysis.Single-valve and single-vehicle tests of type 120 emergency valves werecarried out for emergency diaphragms consisting of NR and CR.Findings–The low-temperature-resistant CR and NR exhibited excellent physical properties.The elasticityand low-temperature resistance of NR were superior to those of CR,whereas the mechanical properties of thetwo rubbers were similar in the temperature range of 0℃–150℃.The NR and CR emergency diaphragms metthe requirements of the single-valve test.In the low-temperature single-vehicle test,only the low-temperaturesensitivity test of the NR emergency diaphragm met the requirements.Originality/value–The innovation of this study is that it provides valuable data and experience for futuredevelopment of type 120 valve rubber diaphragms.