The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE s...The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.展开更多
The coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and ex...The coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploiting oil-gas resources.The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values.A kind of characteristic finite difference schemes is put forward,from which optimal order estimates in l~2 norm are derived for the error in the approximate solutions.The research is important both theoretically and practically for the model analysis in the field,the model numerical method and software development.展开更多
Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are t...Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.展开更多
This article discusses the enhanced oil recovery numerical simulation of the chemical flooding(such as surfactants, alcohol, polymers) composed of two-dimensional multicomponent, ultiphase and incompressible mixed flu...This article discusses the enhanced oil recovery numerical simulation of the chemical flooding(such as surfactants, alcohol, polymers) composed of two-dimensional multicomponent, ultiphase and incompressible mixed fluids. After the oil field is waterflooded, there is still a large amount of crude oil left in the oil deposit. By adding certain chemical substances to the fluid injected, its driving capacity can be greatly increased. The mathematical model of two-dimensional enhanced oil recovery simulation can be described展开更多
A 2-dimensional, multicomponent, multiphase, and incompressible compositional reservoir simulator has been developed and applied to chemical flooding (surfactants, alcohol and polymers) and convergence analysis. The c...A 2-dimensional, multicomponent, multiphase, and incompressible compositional reservoir simulator has been developed and applied to chemical flooding (surfactants, alcohol and polymers) and convergence analysis. The characteristic finite difference methods for 2-dimensional enhanced oil recovery can be described as a coupled system of nonlinear partial differential equations. For a generic case of the cross interference and bounded region, we put forward a kind of characteristic finite difference schemes and make use of thick and thin grids to form a complete set, and of calculus of variations, the theory of prior estimates and techniques. Optimal order estimates in L^2 norm are derived for the error in the approximate solutions. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, J. Douglas, Jr.展开更多
We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpol...We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpolation operator ink is introduced.With the help of ink(not elliptic projection),the optimal error estimate in L∞(J;L2(Ω)) norm of FEM is proved.展开更多
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc...Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.展开更多
We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advanta...We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advantages of EulerianLagrangian methods and discontinuous Galerkin methods.An optimal-order error estimate in the L2 norm and a superconvergence estimate in a weighted energy norm are proved for the characteristic NIPG,IIPG,and SIPG scheme.Numerical experiments are presented to confirm the optimal-order spatial and temporal convergence rates of these schemes as proved in the theorems and to show that these schemes compare favorably to the standard NIPG,OBB,IIPG,and SIPG schemes in the context of advection-diffusion equations.展开更多
The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-ga...The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary value problem. This paper puts forward a kind of characteristic finite difference schemes, and derives from them optimal order estimates in l^2 norm for the error in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, for model numerical method and for software development.展开更多
In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal diff...In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal differentiation and advection terms are treated by the characteristic scheme. Under some conditions about the coefficients and exact solution, optimal error estimates for the numerical solution are obtained. Furthermore, the two- grid characteristic finite volume methods involve solving a nonlinear equation on coarse mesh with mesh size H, a large linear problem for the Oseen two-grid characteristic finite volume method on a fine mesh with mesh size h = O(H2) or a large linear problem for the Newton two-grid characteristic finite volume method on a fine mesh with mesh size h = 0(I log hll/2H3). These methods we studied provide the same convergence rate as that of the characteristic finite volume method, which involves solving one large nonlinear problem on a fine mesh with mesh size h. Some numerical results are presented to demonstrate the efficiency of the proposed methods.展开更多
For the three-dimensional compressible multicomponent displacement problem we put forward the modified method of characteristics with finite element operator-splitting procedures and make use of operator-splitting,cha...For the three-dimensional compressible multicomponent displacement problem we put forward the modified method of characteristics with finite element operator-splitting procedures and make use of operator-splitting,characteristic method,calculus of variations,energy method,negative norm estimate,two kinds of test functions and the theory of prior estimates and techniques.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.These methods have been successfully used in oil-gas resources estimation,enhanced oil recovery simulation and seawater intrusion numerical simulation.展开更多
In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optima...In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optimal control problems consists of three parts: The first part is about integration of the state over the whole time interval, the second part refers to final-time state, and the third part is a regularization term about the control. We discretize the state and co-state by piecewise linear continuous functions, while the control is approximated by piecewise constant functions. Pointwise inequality function constraints on the control are considered, and optimal a L2-norm priori error estimates are obtained. Finally, we give two numerical examples to validate the theoretical analysis.展开更多
The mathematical model of the three-dimensional semiconductor devices of heat conduction is described by a system of four quasilinear partial differential equations for initial boundary value problem. One equation in ...The mathematical model of the three-dimensional semiconductor devices of heat conduction is described by a system of four quasilinear partial differential equations for initial boundary value problem. One equation in elliptic form is for the electric potential; two equations of convection-dominated diffusion type are for the electron and hole concentration; and one heat conduction equation is for temperature. Characteristic finite difference schemes for two kinds of boundary value problems are put forward. By using the thick and thin grids to form a complete set and treating the product threefold-quadratic interpolation, variable time step method with the boundary condition, calculus of variations and the theory of prior estimates and techniques, the optimal error estimates in L2 norm are derived in the approximate solutions.展开更多
This article discusses the enhanced oil recovery numerical simulation of the chemical-flooding (such as surfactallts, alcohol, polymers) composed of three-dimensional multicomponent, multiphase and incompressible mixe...This article discusses the enhanced oil recovery numerical simulation of the chemical-flooding (such as surfactallts, alcohol, polymers) composed of three-dimensional multicomponent, multiphase and incompressible mixed fluids. The mathematical model can be described as a coupled system of nonlinear partial differential equations with initialboundary value problerns. viom the actual conditions such as the effect of cross interference and the three-dimensional charederistic of large-scale science-engineering computation,this article puts forward a kind of characteristic finite element fractional step schemes and obtain the optimal order error estdriates in L2 norm. Thus we have thoroughly solved the well-known theoretical problem proppsed by a famous scientist, R. E. Ewing.展开更多
In this paper,a new numerical method based on a new expanded mixed scheme and the characteristic method is developed and discussed for Sobolev equation with convection term.The hyperbolic part d(x)∂u/∂t+c(x,t)·∇u...In this paper,a new numerical method based on a new expanded mixed scheme and the characteristic method is developed and discussed for Sobolev equation with convection term.The hyperbolic part d(x)∂u/∂t+c(x,t)·∇u is handled by the characteristic method and the diffusion term∇·(a(x,t)∇u+b(x,t)∇ut)is approximated by the new expanded mixed method,whose gradient belongs to the simple square integrable(L^(2)(Ω))^(2)space instead of the classical H(div;Ω)space.For a priori error estimates,some important lemmas based on the new expanded mixed projection are introduced.An optimal priori error estimates in L^(2)-norm for the scalar unknown u and a priori error estimates in(L^(2))^(2)-norm for its gradientλ,and its fluxσ(the coefficients times the negative gradient)are derived.In particular,an optimal priori error estimate in H1-norm for the scalar unknown u is obtained.展开更多
文摘The mixed finite element(MFE) methods for a shallow water equation system consisting of water dynamics equations,silt transport equation,and the equation of bottom topography change were derived.A fully discrete MFE scheme for the discrete_time along characteristics is presented and error estimates are established.The existence and convergence of MFE solution of the discrete current velocity,elevation of the bottom topography,thickness of fluid column,and mass rate of sediment is demonstrated.
基金the Major State Basic Research Program of China(No.G19990328)the National Tackling Key Problem Program(No.20050200069)+1 种基金the National Natural Science Foundation of China(Nos.10771124,10372052)the Ph.D.Programs Foundation of Ministry of Education of China(No.20030422047)
文摘The coupled system of multilayer dynamics of fluids in porous media is to describe the history of oil-gas transport and accumulation in basin evolution.It is of great value in rational evaluation of prospecting and exploiting oil-gas resources.The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary values.A kind of characteristic finite difference schemes is put forward,from which optimal order estimates in l~2 norm are derived for the error in the approximate solutions.The research is important both theoretically and practically for the model analysis in the field,the model numerical method and software development.
基金This work is supported by the Major State Basic Research Program of China (19990328), the National Tackling Key Problem Program, the National Science Foundation of China (10271066 and 0372052), and the Doctorate Foundation of the Ministry of Education of China (20030422047).
文摘Characteristic finite difference fractional step schemes are put forward. The electric potential equation is described by a seven-point finite difference scheme, and the electron and hole concentration equations are treated by a kind of characteristic finite difference fractional step methods. The temperature equation is described by a fractional step method. Thick and thin grids are made use of to form a complete set. Piecewise threefold quadratic interpolation, symmetrical extension, calculus of variations, commutativity of operator product, decomposition of high order difference operators and prior estimates are also made use of. Optimal order estimates in l2 norm are derived to determine the error of the approximate solution. The well-known problem is thorongley and completely solred.
基金This project is sponsored by the National Scaling Programthe National Eighth-Five-Year Tackling Key Problems Program
文摘This article discusses the enhanced oil recovery numerical simulation of the chemical flooding(such as surfactants, alcohol, polymers) composed of two-dimensional multicomponent, ultiphase and incompressible mixed fluids. After the oil field is waterflooded, there is still a large amount of crude oil left in the oil deposit. By adding certain chemical substances to the fluid injected, its driving capacity can be greatly increased. The mathematical model of two-dimensional enhanced oil recovery simulation can be described
基金Project supported by the National Scaling Program and the National Eighth-Five-Year Tackling Key Problems Program
文摘A 2-dimensional, multicomponent, multiphase, and incompressible compositional reservoir simulator has been developed and applied to chemical flooding (surfactants, alcohol and polymers) and convergence analysis. The characteristic finite difference methods for 2-dimensional enhanced oil recovery can be described as a coupled system of nonlinear partial differential equations. For a generic case of the cross interference and bounded region, we put forward a kind of characteristic finite difference schemes and make use of thick and thin grids to form a complete set, and of calculus of variations, the theory of prior estimates and techniques. Optimal order estimates in L^2 norm are derived for the error in the approximate solutions. Thus we have thoroughly solved the well-known theoretical problem proposed by a famous scientist, J. Douglas, Jr.
基金This research is supported by the Foundation for Talents for Next Century of Shandong University
文摘We’ll study the FEM for a model for compressible miscible displacement in porous media which includes molecular diffusion and mechanical dispersion in one-dimensional space.A class of vertices-edges-elements interpolation operator ink is introduced.With the help of ink(not elliptic projection),the optimal error estimate in L∞(J;L2(Ω)) norm of FEM is proved.
基金supported by the National Natural Science Foundation of China grants No.11971241.
文摘Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.
文摘We develop a family of characteristic discontinuous Galerkin methods for transient advection-diffusion equations,including the characteristic NIPG,OBB,IIPG,and SIPG schemes.The derived schemes possess combined advantages of EulerianLagrangian methods and discontinuous Galerkin methods.An optimal-order error estimate in the L2 norm and a superconvergence estimate in a weighted energy norm are proved for the characteristic NIPG,IIPG,and SIPG scheme.Numerical experiments are presented to confirm the optimal-order spatial and temporal convergence rates of these schemes as proved in the theorems and to show that these schemes compare favorably to the standard NIPG,OBB,IIPG,and SIPG schemes in the context of advection-diffusion equations.
基金Project supported by the National Scaling Program and the National Eighth Five-Year Key-Problems-Tackling Program.
文摘The software for oil-gas transport and accumulation is to describe the history of oil-gas transport and accumulation in basin evolution. It is of great value in rational evaluation of prospecting and exploiting oil-gas resources. The mathematical model can be described as a coupled system of nonlinear partial differential equations with moving boundary value problem. This paper puts forward a kind of characteristic finite difference schemes, and derives from them optimal order estimates in l^2 norm for the error in the approximate solutions. The research is important both theoretically and practically for the model analysis in the field, for model numerical method and for software development.
基金Acknowledgments. The work was supported by the Natural Science Foundation of China (No.11126117), CAPES and CNPq of Brazil, and the Doctor Fund of Henan Polytechnic Univer- sity (B2012-098). The author is very grateful to Professor JinYun Yuan for his kind invitation to visit the Universidade Federal do Paran, Brazil.
文摘In this work, two-grid characteristic finite volume schemes for the nonlinear parabolic problem are considered. In our algorithms, the diffusion term is discretized by the finite volume method, while the temporal differentiation and advection terms are treated by the characteristic scheme. Under some conditions about the coefficients and exact solution, optimal error estimates for the numerical solution are obtained. Furthermore, the two- grid characteristic finite volume methods involve solving a nonlinear equation on coarse mesh with mesh size H, a large linear problem for the Oseen two-grid characteristic finite volume method on a fine mesh with mesh size h = O(H2) or a large linear problem for the Newton two-grid characteristic finite volume method on a fine mesh with mesh size h = 0(I log hll/2H3). These methods we studied provide the same convergence rate as that of the characteristic finite volume method, which involves solving one large nonlinear problem on a fine mesh with mesh size h. Some numerical results are presented to demonstrate the efficiency of the proposed methods.
基金This research is supported by the Major State Research Program of China(Grant No.19990328),the National Natural Sciences Foundation of China(Grant Nos.19871051 and 19972039),the National Tackling Key Problems Program and the Doctorate Foundation of the S
文摘For the three-dimensional compressible multicomponent displacement problem we put forward the modified method of characteristics with finite element operator-splitting procedures and make use of operator-splitting,characteristic method,calculus of variations,energy method,negative norm estimate,two kinds of test functions and the theory of prior estimates and techniques.Optimal order estimates in L^2 norm are derived for the error in the approximate solution.These methods have been successfully used in oil-gas resources estimation,enhanced oil recovery simulation and seawater intrusion numerical simulation.
基金Acknowledgments. The authors would like to thank the anonymous reviewers for their valu- able comments and suggestions on an earlier version of this paper. Tile first author was sup- ported by the National Natural Science Foundation of China (No. 11126086,11201485) and the F~mdamental Research Funds for the Central Universities (No.12CX04083A) The second author was supported by the National Natural Science Foundation of China (No. 11171190) The third author was supported by the National Natural Science Foundation of China (No.11101431).
文摘In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optimal control problems consists of three parts: The first part is about integration of the state over the whole time interval, the second part refers to final-time state, and the third part is a regularization term about the control. We discretize the state and co-state by piecewise linear continuous functions, while the control is approximated by piecewise constant functions. Pointwise inequality function constraints on the control are considered, and optimal a L2-norm priori error estimates are obtained. Finally, we give two numerical examples to validate the theoretical analysis.
基金Project supported by the National Scaling Program,the National Eighth-Five Year Tackling Key Problems Program and the Doctoral Found of the National Education Commission.
文摘The mathematical model of the three-dimensional semiconductor devices of heat conduction is described by a system of four quasilinear partial differential equations for initial boundary value problem. One equation in elliptic form is for the electric potential; two equations of convection-dominated diffusion type are for the electron and hole concentration; and one heat conduction equation is for temperature. Characteristic finite difference schemes for two kinds of boundary value problems are put forward. By using the thick and thin grids to form a complete set and treating the product threefold-quadratic interpolation, variable time step method with the boundary condition, calculus of variations and the theory of prior estimates and techniques, the optimal error estimates in L2 norm are derived in the approximate solutions.
文摘This article discusses the enhanced oil recovery numerical simulation of the chemical-flooding (such as surfactallts, alcohol, polymers) composed of three-dimensional multicomponent, multiphase and incompressible mixed fluids. The mathematical model can be described as a coupled system of nonlinear partial differential equations with initialboundary value problerns. viom the actual conditions such as the effect of cross interference and the three-dimensional charederistic of large-scale science-engineering computation,this article puts forward a kind of characteristic finite element fractional step schemes and obtain the optimal order error estdriates in L2 norm. Thus we have thoroughly solved the well-known theoretical problem proppsed by a famous scientist, R. E. Ewing.
基金supported by the National Natural Science Fund of China(11061021)the Scientific Research Projection of Higher Schools of Inner Mongolia(NJZZ12011,NJZY13199)+1 种基金the Natural Science Fund of Inner Mongolia Province(2012MS0108,2012MS0106)the Program of Higher-level talents of Inner Mongolia University(125119,30105-125132).
文摘In this paper,a new numerical method based on a new expanded mixed scheme and the characteristic method is developed and discussed for Sobolev equation with convection term.The hyperbolic part d(x)∂u/∂t+c(x,t)·∇u is handled by the characteristic method and the diffusion term∇·(a(x,t)∇u+b(x,t)∇ut)is approximated by the new expanded mixed method,whose gradient belongs to the simple square integrable(L^(2)(Ω))^(2)space instead of the classical H(div;Ω)space.For a priori error estimates,some important lemmas based on the new expanded mixed projection are introduced.An optimal priori error estimates in L^(2)-norm for the scalar unknown u and a priori error estimates in(L^(2))^(2)-norm for its gradientλ,and its fluxσ(the coefficients times the negative gradient)are derived.In particular,an optimal priori error estimate in H1-norm for the scalar unknown u is obtained.