In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optima...In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optimal control problems consists of three parts: The first part is about integration of the state over the whole time interval, the second part refers to final-time state, and the third part is a regularization term about the control. We discretize the state and co-state by piecewise linear continuous functions, while the control is approximated by piecewise constant functions. Pointwise inequality function constraints on the control are considered, and optimal a L2-norm priori error estimates are obtained. Finally, we give two numerical examples to validate the theoretical analysis.展开更多
Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow pheno...Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.展开更多
The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect ...The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.展开更多
A nonlinear parabolic system is derived to describe compressible miscible displacement in a porous medium.The concentration equation is treated by a mixed finite element method with characteristics(CMFEM)and the press...A nonlinear parabolic system is derived to describe compressible miscible displacement in a porous medium.The concentration equation is treated by a mixed finite element method with characteristics(CMFEM)and the pressure equation is treated by a parabolic mixed finite element method(PMFEM).Two-grid algorithm is considered to linearize nonlinear coupled system of two parabolic partial differential equations.Moreover,the L q error estimates are conducted for the pressure,Darcy velocity and concentration variables in the two-grid solutions.Both theoretical analysis and numerical experiments are presented to show that the two-grid algorithm is very effective.展开更多
An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the ...An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled f'mite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage.展开更多
In this work,we consider a combined finite element method for fully coupled nonlinear thermo-poroelastic model problems.The mixed finite element(MFE)method is used for the pressure,the characteristics finite element(C...In this work,we consider a combined finite element method for fully coupled nonlinear thermo-poroelastic model problems.The mixed finite element(MFE)method is used for the pressure,the characteristics finite element(CFE)method is used for the temperature,and the Galerkin finite element(GFE)method is used for the elastic displacement.The semi-discrete and fully discrete finite element schemes are established and the stability of this method is presented.We derive error estimates for the pressure,temperature and displacement.Several numerical examples are presented to confirm the accuracy of the method.展开更多
基金Acknowledgments. The authors would like to thank the anonymous reviewers for their valu- able comments and suggestions on an earlier version of this paper. Tile first author was sup- ported by the National Natural Science Foundation of China (No. 11126086,11201485) and the F~mdamental Research Funds for the Central Universities (No.12CX04083A) The second author was supported by the National Natural Science Foundation of China (No. 11171190) The third author was supported by the National Natural Science Foundation of China (No.11101431).
文摘In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optimal control problems consists of three parts: The first part is about integration of the state over the whole time interval, the second part refers to final-time state, and the third part is a regularization term about the control. We discretize the state and co-state by piecewise linear continuous functions, while the control is approximated by piecewise constant functions. Pointwise inequality function constraints on the control are considered, and optimal a L2-norm priori error estimates are obtained. Finally, we give two numerical examples to validate the theoretical analysis.
基金King Mongkut’s University of Technology North Bangkok (KMUTNB)the Office of the Higher Education Commission (OHEC)the National Metal and Materials Technology Center (MTEC) for supporting this research work
文摘Level set methods are widely used for predicting evolutions of complex free surface topologies,such as the crystal and crack growth,bubbles and droplets deformation,spilling and breaking waves,and two-phase flow phenomena.This paper presents a characteristic level set equation which is derived from the two-dimensional level set equation by using the characteristic-based scheme.An explicit finite volume element method is developed to discretize the equation on triangular grids.Several examples are presented to demonstrate the performance of the proposed method for calculating interface evolutions in time.The proposed level set method is also coupled with the Navier-Stokes equations for two-phase immiscible incompressible flow analysis with surface tension.The Rayleigh-Taylor instability problem is used to test and evaluate the effectiveness of the proposed scheme.
文摘The equation of wave propagation in a circular chamber with mean flow is obtained. Computational solution based on finite element method is employed to determine the transmission loss of expansive chamber. The effect of the mean flow and geometry (length of expansion chamber and expansion ratio)on acoustic attenuation performance is discussed, the predicted values of transmission loss of expansion chamber without and with mean flow are compared with those reported in the literature and they agree well. The accuracy of the prediction of transmission loss implies that finite element approximations are applicable to a lot of practical applications.
基金Natural Science Foundation of Guangdong province,China(2018A0303100016)Educational Commission of Guangdong Province,China(2019KTSCX174)+1 种基金The second author's work is supported by the State Key Program of National Natural Science Foundation of China(11931003)National Natural Science Foundation of China(41974133,11671157).
文摘A nonlinear parabolic system is derived to describe compressible miscible displacement in a porous medium.The concentration equation is treated by a mixed finite element method with characteristics(CMFEM)and the pressure equation is treated by a parabolic mixed finite element method(PMFEM).Two-grid algorithm is considered to linearize nonlinear coupled system of two parabolic partial differential equations.Moreover,the L q error estimates are conducted for the pressure,Darcy velocity and concentration variables in the two-grid solutions.Both theoretical analysis and numerical experiments are presented to show that the two-grid algorithm is very effective.
基金Project supported by the National Nature Science Foundation of China (Grant No.50479068) the Program for New Century Excellent Talents in Universities (Grant No. NCET-04-0494).
文摘An efficient and accurate solution algorithm was proposed for 1-D unsteady flow problems widely existing in hydraulic engineering. Based on the split-characteristic finite element method, the numerical model with the Saint-Venant equations of 1-D unsteady flows was established. The assembled f'mite element equations were solved with the tri-diagonal matrix algorithm. In the semi-implicit and explicit scheme, the critical time step of the method was dependent on the space step and flow velocity, not on the wave celerity. The method was used to eliminate the restriction due to the wave celerity for the computational analysis of unsteady open-channel flows. The model was verified by the experimental data and theoretical solution and also applied to the simulation of the flow in practical river networks. It shows that the numerical method has high efficiency and accuracy and can be used to simulate 1-D steady flows, and unsteady flows with shock waves or flood waves. Compared with other numerical methods, the algorithm of this method is simpler with higher accuracy, less dissipation, higher computation efficiency and less computer storage.
基金supported by the National Natural Science Foundation of China(Grant No.12131014).
文摘In this work,we consider a combined finite element method for fully coupled nonlinear thermo-poroelastic model problems.The mixed finite element(MFE)method is used for the pressure,the characteristics finite element(CFE)method is used for the temperature,and the Galerkin finite element(GFE)method is used for the elastic displacement.The semi-discrete and fully discrete finite element schemes are established and the stability of this method is presented.We derive error estimates for the pressure,temperature and displacement.Several numerical examples are presented to confirm the accuracy of the method.