The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of ...The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.展开更多
Capturing solar energy as heat for water treatment has become a substantial approach to obtain freshwater.To obtain higher performance,the understanding of the mechanism of how water molecules interact with the interf...Capturing solar energy as heat for water treatment has become a substantial approach to obtain freshwater.To obtain higher performance,the understanding of the mechanism of how water molecules interact with the interface is particularly fundamental,because the migration process of water molecules on the evaporation interface will directly affect the performance of the device.Herein we regulate the number of hydroxyl groups on the surface of reduced graphene oxide quantitatively,to study the effect of different wettability of interfaces on the performance of solar water generators.The water evaporation performance displays a volcanic shape as increasing wettability.Calculated by the computational chemistry method,deviation from proper wetting humidity is not conducive to the migration of water molecules from the surface.The double-edged sword effect of wettability on performances is clarified,and the surface energy density is the key to break through the limit by the finite element method.展开更多
基金the support of the China Manned Space Engineering(YYMT1201-EXP08)。
文摘The infiltration casting method is widely employed for the preparation of ex-situ composite materials.However,the production of composite materials using this method must necessitates a comprehensive understanding of the wettability and interface characteristics between the reinforcing phase and the bulk metallic glasses(BMGs).This work optimized the composition of Zr-based BMGs through microalloying methods,resulting in a new set of Zr-based BMGs with excellent glass-forming ability.Wetting experiments between the Zr-based BMGs melts and W substrates were conducted using the traditional sessile drop method,and the interfaces were characterized utilizing a scanning electron microscope(SEM)equipped with energy dispersive X-ray spectroscopy(EDS).The work demonstrates that the microalloying method substantially enhances the wettability of the Zr-based BMGs melt.Additionally,the incorporation of Nb element impedes the formation of W-Zr phases,but the introduction of Nb element does not alter the extent of interdiffusion between the constituent elements of the amorphous matrix and W element,indicating that the influence of Nb element on the diffusion of individual elements is minute.
基金funding from the National Natural Science Foundation of China(Nos.21871009 and 21527803)the Youth Science Foundation of Hubei University(No.202011303000002)China Postdoctoral Science Foundation(No.2018M641064).
文摘Capturing solar energy as heat for water treatment has become a substantial approach to obtain freshwater.To obtain higher performance,the understanding of the mechanism of how water molecules interact with the interface is particularly fundamental,because the migration process of water molecules on the evaporation interface will directly affect the performance of the device.Herein we regulate the number of hydroxyl groups on the surface of reduced graphene oxide quantitatively,to study the effect of different wettability of interfaces on the performance of solar water generators.The water evaporation performance displays a volcanic shape as increasing wettability.Calculated by the computational chemistry method,deviation from proper wetting humidity is not conducive to the migration of water molecules from the surface.The double-edged sword effect of wettability on performances is clarified,and the surface energy density is the key to break through the limit by the finite element method.