In this paper, algorithms of automatic identification of persons on the basis of their photographs are considered. For identification of persons, the comparative analysis of control systems by bases of images created ...In this paper, algorithms of automatic identification of persons on the basis of their photographs are considered. For identification of persons, the comparative analysis of control systems by bases of images created in the different periods is carried out and their applied possibilities are shown.展开更多
Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been su...Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been summarized from the following technical aspects including image acquisition, image processing, characteristic parameter extraction, pattern recognition and programming softwares. In addition, the existing problems during the application of this technique to maize variety identification have also been analyzed and its development tendency is forecasted.展开更多
To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Cho...To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Chose mobile terminal equipment as image collecting tool and built database of rice leaf images with diseases under threshold segmentation method. Characteristic parameters were extracted from color, shape and texture. Furthermore, parameters were optimized using the single-factor variance analysis and the effects of BP neural network model. The optimization would simplify BP neural network model without reducing the recognition accuracy. The finally model could successfully recognize 98%, 96% and 98% of rice blast, sheath blight and white leaf blight, respectively.展开更多
Peer-to-Peer (P2P) technology is one of the most popular techniques nowadays, and accurate identification of P2P traffic is important for many network activities. The classification of network traffic by using port-ba...Peer-to-Peer (P2P) technology is one of the most popular techniques nowadays, and accurate identification of P2P traffic is important for many network activities. The classification of network traffic by using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detection. A novel method for P2P traffic identification is proposed in this work, and the methodology relies only on the statistics of end-point, which is a pair of destination IP address and destination port. Features of end-point behaviors are extracted and with which the Support Vector Machine classification model is built. The experimental results demonstrate that this method can classify network applications by using TCP or UDP protocol effectively. A large set of experiments has been carried over to assess the performance of this approach, and the results prove that the proposed approach has good performance both at accuracy and robustness.展开更多
Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,etc.Such biometric modalities are mostly used in recogni...Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,etc.Such biometric modalities are mostly used in recognition tasks separately as in unimodal systems,or jointly with two or more as in multimodal systems.However,multimodal systems can usually enhance the recognition performance over unimodal systems by integrating the biometric data of multiple modalities at different fusion levels.Despite this enhancement,in real-life applications some factors degrade multimodal systems’performance,such as occlusion,face poses,and noise in voice data.In this paper,we propose two algorithms that effectively apply dynamic fusion at feature level based on the data quality of multimodal biometrics.The proposed algorithms attempt to minimize the negative influence of confusing and low-quality features by either exclusion or weight reduction to achieve better recognition performance.The proposed dynamic fusion was achieved using face and voice biometrics,where face features were extracted using principal component analysis(PCA),and Gabor filters separately,whilst voice features were extracted using Mel-Frequency Cepstral Coefficients(MFCCs).Here,the facial data quality assessment of face images is mainly based on the existence of occlusion,whereas the assessment of voice data quality is substantially based on the calculation of signal to noise ratio(SNR)as per the existence of noise.To evaluate the performance of the proposed algorithms,several experiments were conducted using two combinations of three different databases,AR database,and the extended Yale Face Database B for face images,in addition to VOiCES database for voice data.The obtained results show that both proposed dynamic fusion algorithms attain improved performance and offer more advantages in identification and verification over not only the standard unimodal algorithms but also the multimodal algorithms using standard fusion methods.展开更多
Automatic face identification poses an exacting problem in feature extraction, pattern analysis and recognition. Owing to its wide potential for applications efforts have been made and some systems have been establish...Automatic face identification poses an exacting problem in feature extraction, pattern analysis and recognition. Owing to its wide potential for applications efforts have been made and some systems have been established catering for some aspects of the problem. The-state-of -the-art is summarized. The author's work on face feature analysis and extraction is also briefly introduced. These features, which are extracted from one monochrome frontal view image of the face, include the profile feature, the shape of the face contour, the eye region statistics and the generic measures across the face. Then the problems to be solved and the prospects of futher work and applications of automatic face identification are concluded.展开更多
This paper studies the problem of radar target recognition based on radar cross section(RCS)observation sequence.First,the authors compute the discrete wavelet transform of RCS observation sequence and extract a valid...This paper studies the problem of radar target recognition based on radar cross section(RCS)observation sequence.First,the authors compute the discrete wavelet transform of RCS observation sequence and extract a valid statistical feature vector containing five components.These five components represent five different features of the radar target.Second,the authors establish a set-valued model to represent the relation between the feature vector and the authenticity of the radar target.By set-valued identification method,the authors can estimate the system parameter,based on which the recognition criteria is given.In order to illustrate the efficiency of the proposed recognition method,extensive simulations are given finally assuming that the true target is a cone frustum and the RCS of the false target is normally distributed.The results show that the set-valued identification method has a higher recognition rate than the traditional fuzzy classification method and evidential reasoning method.展开更多
This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm ob...This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm observes n×n neighborhoods of the point in all directions, and then incorporates the peripheral fea- tures using the Mel frequency cepstrum components (MFCCs)-based feature extractor of the Tsinghua elec- tronic engineering speech processing (THEESP) for Mandarin automatic speech recognition (MASR) sys- tem as replacements of the dynamic features with different feature combinations. In this algorithm, the or- thogonal bases are extracted directly from the speech data using discrite cosime transformation (DCT) with 3×3 blocks on an NL-TS pattern as the peripheral features. The new primal bases are then selected and simplified in the form of the ?dp- operator in the time direction and the ?dp- operator in the frequency di- t f rection. The algorithm has 23.29% improvements of the relative error rate in comparison with the standard MFCC feature-set and the dynamic features in tests using THEESP with the duration distribution-based hid- den Markov model (DDBHMM) based on MASR system.展开更多
针对中文汽车领域实体抽取任务中对嵌套实体、长实体识别效果差的问题,提出一种实体类别增强的嵌套实体抽取(ECE-NER)模型。首先,基于特征融合编码,提高模型对领域实体边界的感知能力;然后,尾词识别模块利用多层感知机得到实体尾词集合...针对中文汽车领域实体抽取任务中对嵌套实体、长实体识别效果差的问题,提出一种实体类别增强的嵌套实体抽取(ECE-NER)模型。首先,基于特征融合编码,提高模型对领域实体边界的感知能力;然后,尾词识别模块利用多层感知机得到实体尾词集合;最后,前向边界识别模块基于义原构造的实体类别特征和自注意力机制得到实体类别增强的候选尾词表征,融合领域实体类别特征,利用双仿射编码器计算特定尾词和实体类型的实体跨度概率,从而确定命名实体。在某汽车企业生产线故障数据集、汽车工业故障抽取评测数据集CCL2022和中文医学文本数据集CHIP2020上进行模型验证。实验结果表明,所提模型在前两个数据集上的实体识别F1值比序列标注模型(BERT+BiLSTM+CRF)、基于跨度的实体抽取模型(PURE(Princeton University Relation Extraction)、SpERT(Span-based Entity and Relation Transformer))分别提高了4.1、1.8、1.6个百分点和9.0、5.4、7.3个百分点;在第一个数据集和第三个数据集中嵌套实体识别F1值与PURE、SpERT模型相比提高了13.3、8.3个百分点和21.7、9.3个百分点,验证了所提模型在嵌套实体识别上的有效性。展开更多
文摘In this paper, algorithms of automatic identification of persons on the basis of their photographs are considered. For identification of persons, the comparative analysis of control systems by bases of images created in the different periods is carried out and their applied possibilities are shown.
基金Special Fund for Science & Technology Research of Education Commission,Chongqing(KJ101302)~~
文摘Variety identification is important for maize breeding, processing and trade. The computer vision technique has been widely applied to maize variety identification. In this paper, computer vision technique has been summarized from the following technical aspects including image acquisition, image processing, characteristic parameter extraction, pattern recognition and programming softwares. In addition, the existing problems during the application of this technique to maize variety identification have also been analyzed and its development tendency is forecasted.
基金Supported by Quality and Brand Construction of"Internet+County Characteristic Agricultural Products"(ZY17C06)
文摘To solve the problem of mistake recognition among rice diseases, automatic recognition methods based on BP(back propagation) neural network were studied in this paper for blast, sheath blight and bacterial blight. Chose mobile terminal equipment as image collecting tool and built database of rice leaf images with diseases under threshold segmentation method. Characteristic parameters were extracted from color, shape and texture. Furthermore, parameters were optimized using the single-factor variance analysis and the effects of BP neural network model. The optimization would simplify BP neural network model without reducing the recognition accuracy. The finally model could successfully recognize 98%, 96% and 98% of rice blast, sheath blight and white leaf blight, respectively.
基金Sonsored by the National Key Technology R&D Program(Grant No.2102BAH18B05)
文摘Peer-to-Peer (P2P) technology is one of the most popular techniques nowadays, and accurate identification of P2P traffic is important for many network activities. The classification of network traffic by using port-based or payload-based analysis is becoming increasingly difficult when many applications use dynamic port numbers, masquerading techniques, and encryption to avoid detection. A novel method for P2P traffic identification is proposed in this work, and the methodology relies only on the statistics of end-point, which is a pair of destination IP address and destination port. Features of end-point behaviors are extracted and with which the Support Vector Machine classification model is built. The experimental results demonstrate that this method can classify network applications by using TCP or UDP protocol effectively. A large set of experiments has been carried over to assess the performance of this approach, and the results prove that the proposed approach has good performance both at accuracy and robustness.
文摘Biometric recognition refers to the process of recognizing a person’s identity using physiological or behavioral modalities,such as face,voice,fingerprint,gait,etc.Such biometric modalities are mostly used in recognition tasks separately as in unimodal systems,or jointly with two or more as in multimodal systems.However,multimodal systems can usually enhance the recognition performance over unimodal systems by integrating the biometric data of multiple modalities at different fusion levels.Despite this enhancement,in real-life applications some factors degrade multimodal systems’performance,such as occlusion,face poses,and noise in voice data.In this paper,we propose two algorithms that effectively apply dynamic fusion at feature level based on the data quality of multimodal biometrics.The proposed algorithms attempt to minimize the negative influence of confusing and low-quality features by either exclusion or weight reduction to achieve better recognition performance.The proposed dynamic fusion was achieved using face and voice biometrics,where face features were extracted using principal component analysis(PCA),and Gabor filters separately,whilst voice features were extracted using Mel-Frequency Cepstral Coefficients(MFCCs).Here,the facial data quality assessment of face images is mainly based on the existence of occlusion,whereas the assessment of voice data quality is substantially based on the calculation of signal to noise ratio(SNR)as per the existence of noise.To evaluate the performance of the proposed algorithms,several experiments were conducted using two combinations of three different databases,AR database,and the extended Yale Face Database B for face images,in addition to VOiCES database for voice data.The obtained results show that both proposed dynamic fusion algorithms attain improved performance and offer more advantages in identification and verification over not only the standard unimodal algorithms but also the multimodal algorithms using standard fusion methods.
文摘Automatic face identification poses an exacting problem in feature extraction, pattern analysis and recognition. Owing to its wide potential for applications efforts have been made and some systems have been established catering for some aspects of the problem. The-state-of -the-art is summarized. The author's work on face feature analysis and extraction is also briefly introduced. These features, which are extracted from one monochrome frontal view image of the face, include the profile feature, the shape of the face contour, the eye region statistics and the generic measures across the face. Then the problems to be solved and the prospects of futher work and applications of automatic face identification are concluded.
基金supported by the National Natural Science Foundation of China under Grant No.61174042the National Key Basic Research Program of China(973 Program) under Grant No.2014CB845301
文摘This paper studies the problem of radar target recognition based on radar cross section(RCS)observation sequence.First,the authors compute the discrete wavelet transform of RCS observation sequence and extract a valid statistical feature vector containing five components.These five components represent five different features of the radar target.Second,the authors establish a set-valued model to represent the relation between the feature vector and the authenticity of the radar target.By set-valued identification method,the authors can estimate the system parameter,based on which the recognition criteria is given.In order to illustrate the efficiency of the proposed recognition method,extensive simulations are given finally assuming that the true target is a cone frustum and the RCS of the false target is normally distributed.The results show that the set-valued identification method has a higher recognition rate than the traditional fuzzy classification method and evidential reasoning method.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 200/AA/14)
文摘This work describes an improved feature extractor algorithm to extract the peripheral features of point x(ti,fj) using a nonlinear algorithm to compute the nonlinear time spectrum (NL-TS) pattern. The algo- rithm observes n×n neighborhoods of the point in all directions, and then incorporates the peripheral fea- tures using the Mel frequency cepstrum components (MFCCs)-based feature extractor of the Tsinghua elec- tronic engineering speech processing (THEESP) for Mandarin automatic speech recognition (MASR) sys- tem as replacements of the dynamic features with different feature combinations. In this algorithm, the or- thogonal bases are extracted directly from the speech data using discrite cosime transformation (DCT) with 3×3 blocks on an NL-TS pattern as the peripheral features. The new primal bases are then selected and simplified in the form of the ?dp- operator in the time direction and the ?dp- operator in the frequency di- t f rection. The algorithm has 23.29% improvements of the relative error rate in comparison with the standard MFCC feature-set and the dynamic features in tests using THEESP with the duration distribution-based hid- den Markov model (DDBHMM) based on MASR system.
文摘针对中文汽车领域实体抽取任务中对嵌套实体、长实体识别效果差的问题,提出一种实体类别增强的嵌套实体抽取(ECE-NER)模型。首先,基于特征融合编码,提高模型对领域实体边界的感知能力;然后,尾词识别模块利用多层感知机得到实体尾词集合;最后,前向边界识别模块基于义原构造的实体类别特征和自注意力机制得到实体类别增强的候选尾词表征,融合领域实体类别特征,利用双仿射编码器计算特定尾词和实体类型的实体跨度概率,从而确定命名实体。在某汽车企业生产线故障数据集、汽车工业故障抽取评测数据集CCL2022和中文医学文本数据集CHIP2020上进行模型验证。实验结果表明,所提模型在前两个数据集上的实体识别F1值比序列标注模型(BERT+BiLSTM+CRF)、基于跨度的实体抽取模型(PURE(Princeton University Relation Extraction)、SpERT(Span-based Entity and Relation Transformer))分别提高了4.1、1.8、1.6个百分点和9.0、5.4、7.3个百分点;在第一个数据集和第三个数据集中嵌套实体识别F1值与PURE、SpERT模型相比提高了13.3、8.3个百分点和21.7、9.3个百分点,验证了所提模型在嵌套实体识别上的有效性。