期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Integrative method in lithofacies characteristics and 3D velocity volume of the Permian igneous rocks in H area, Tarim Basin 被引量:1
1
作者 Yang Haijun Liu Yongfu +3 位作者 Xie Huiwen Xu Yongzhong Sun Qi Wang Shuangshuang 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期179-184,共6页
This paper introduces horizon control, seismic control, logging control and facies control methods through the application of the least squares fitting of logging curves, seismic inversion and facies-controlled techni... This paper introduces horizon control, seismic control, logging control and facies control methods through the application of the least squares fitting of logging curves, seismic inversion and facies-controlled techniques. Based on the microgeology and thin section analyses, the lithology, lithofacies and periods of the Permian igneous rocks are described in detail. The seismic inversion and facies-controlled techniques were used to find the distribution characteristics of the igneous rocks and the 3D velocity volume. The least squares fitting of the logging curves overcome the problem that the work area is short of density logging data. Through analysis of thin sections, the lithofacies can be classified into eruption airfall subfacies, eruption pyroclastic flow subfacies and eruption facies. 展开更多
关键词 characteristics of igneous rocks Fitting of logging curves Seismic inversion Velocity volume Seismic facies
下载PDF
DBN-GABP model for estimation of aircraft wake vortex parameters using Lidar data 被引量:1
2
作者 Zhiqiang WEI Tong LU +1 位作者 Runping GU Fei LIU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期347-368,共22页
Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Dopple... Aircraft wake turbulence is an inherent outcome of aircraft flight,presenting a substan-tial challenge to air traffic control,aviation safety and operational efficiency.Building upon data obtained from coherent Doppler Lidar detection,and combining Dynamic Bayesian Networks(DBN)with Genetic Algorithm-optimized Backpropagation Neural Networks(GA-BPNN),this paper proposes a model for the inversion of wake vortex parameters.During the wake vortex flow field simulation analysis,the wind and turbulent environment were initially superimposed onto the simulated wake velocity field.Subsequently,Lidar-detected echoes of the velocity field are simulated to obtain a data set similar to the actual situation for model training.In the case study validation,real measured data underwent preprocessing and were then input into the established model.This allowed us to construct the wake vortex characteristic parameter inversion model.The final results demonstrated that our model achieved parameter inversion with only minor errors.In a practical example,our model in this paper significantly reduced the mean square error of the inverted velocity field when compared to the traditional algorithm.This study holds significant promise for real-time monitoring of wake vortices at airports,and is proved a crucial step in developing wake vortex interval standards. 展开更多
关键词 Air traffic control Wake vortex flow field simulation Lidar echo simulation DBNmodel GA-BP model Wakevortex characteristic parameter inversion model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部