The anti-cavitation performance of a high-speed centrifugal pump with a splitter-bladed inducer is investigated under different flow rates and different inlet pressures. Simulations and external characteristics experi...The anti-cavitation performance of a high-speed centrifugal pump with a splitter-bladed inducer is investigated under different flow rates and different inlet pressures. Simulations and external characteristics experiments are carried out. Static pressure and the vapor volume fraction distributions on the inducer and the impeller of the pump under various operation conditions are obtained. The results show that the cavitation developments on the impeller and on the inducer with the flow rates are reverse, while the development of the inlet pressure on the inducer and the impeller is the same. Cavitation on the impeller increases with the increase of flow rates, and it extends to the near passages with rotating, while cavitation on the inducer is more complex than that on the impeller. Cavitation at the inlet of the inducer decreases with the increase of flow rates, while cavitation at the outlet of the inducer is opposite. The results also show that cavitation development on the impeller and on the inducer with the inlet pressure is the same. Cavitation both decreases with the increase of the inlet pressure at the same flow rate. Furthermore, asymmetric cavitation on the impeller and on the inducer is both observed. And the asymmetric degree of cavitation on the impeller is higher than that on the inducer.展开更多
The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In orde...The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In order to improve the anti-cavitation performance of the centrifugal pumps, variable-pitch inducers are placed upstream of the impeller. Because the rotational speeds directly affect the flow and the performance of the pump, it is essential to characterize the performance of the pump with a variable-pitch inducer at various rotational speeds. In this paper, the simulations and the experimental tests of a centrifugal pump with a variable-pitch inducer are designed and carried out under various rotational speed conditions. Navier-Stokes equations, coupled with a Reynolds average simulation approach, are used in the simulations. In the experimental tests, the external and anti-cavitation performances of the pump are investigated in a closed system. The following results are obtained from the simulations. Firstly, the velocity in the passage of the inducer rises with the increase of the rotational speed. Secondly, the static pressure escalates on the inducer and the impeller with the increase of the rotational speed. Thirdly, the static pressure distribution on the inducer and the impeller is asymmetric. Fourthly, the anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Additional results are gathered from an analysis of the experiments. H-Q curves are similar parabolas at various rotational speeds, while η-Q curves are similar parabolas only when n ≤6 000 r/min. The anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Finally, the simulation results are found to be consistent with the experimental results.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.51406185)China Scholarship Council Project in 2012(Grant No.201208330325)+1 种基金the Third Level 151 Talent Project in Zhejiang Provincethe Professional Leader Leading Project in 2013(Grant No.lj2013005)
文摘The anti-cavitation performance of a high-speed centrifugal pump with a splitter-bladed inducer is investigated under different flow rates and different inlet pressures. Simulations and external characteristics experiments are carried out. Static pressure and the vapor volume fraction distributions on the inducer and the impeller of the pump under various operation conditions are obtained. The results show that the cavitation developments on the impeller and on the inducer with the flow rates are reverse, while the development of the inlet pressure on the inducer and the impeller is the same. Cavitation on the impeller increases with the increase of flow rates, and it extends to the near passages with rotating, while cavitation on the inducer is more complex than that on the impeller. Cavitation at the inlet of the inducer decreases with the increase of flow rates, while cavitation at the outlet of the inducer is opposite. The results also show that cavitation development on the impeller and on the inducer with the inlet pressure is the same. Cavitation both decreases with the increase of the inlet pressure at the same flow rate. Furthermore, asymmetric cavitation on the impeller and on the inducer is both observed. And the asymmetric degree of cavitation on the impeller is higher than that on the inducer.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51406185,51579225)the Third Level 151 Talent Project in Zhejiang Province
文摘The centrifugal pumps usually work at various rotational speeds. The variation in the rotational speeds will affect the internal flow, the external performance, and the anti-cavitation performance of the pump. In order to improve the anti-cavitation performance of the centrifugal pumps, variable-pitch inducers are placed upstream of the impeller. Because the rotational speeds directly affect the flow and the performance of the pump, it is essential to characterize the performance of the pump with a variable-pitch inducer at various rotational speeds. In this paper, the simulations and the experimental tests of a centrifugal pump with a variable-pitch inducer are designed and carried out under various rotational speed conditions. Navier-Stokes equations, coupled with a Reynolds average simulation approach, are used in the simulations. In the experimental tests, the external and anti-cavitation performances of the pump are investigated in a closed system. The following results are obtained from the simulations. Firstly, the velocity in the passage of the inducer rises with the increase of the rotational speed. Secondly, the static pressure escalates on the inducer and the impeller with the increase of the rotational speed. Thirdly, the static pressure distribution on the inducer and the impeller is asymmetric. Fourthly, the anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Additional results are gathered from an analysis of the experiments. H-Q curves are similar parabolas at various rotational speeds, while η-Q curves are similar parabolas only when n ≤6 000 r/min. The anti-cavitation performance of the pump deteriorates with the increase of the rotational speed. Finally, the simulation results are found to be consistent with the experimental results.