A high-resolution customized numerical model is used to analyze the water transport in the three major water passages between the Andaman Sea(AS)and the Bay of Bengal,i.e.,the Preparis Channel(PC),the Ten Degree Chann...A high-resolution customized numerical model is used to analyze the water transport in the three major water passages between the Andaman Sea(AS)and the Bay of Bengal,i.e.,the Preparis Channel(PC),the Ten Degree Channel(TDC),and the Great Channel(GC),based on the daily averaged simulation results ranging from 2010 to 2019.Spectral analysis and Empirical Orthogonal Function(EOF)methods are employed to investigate the spatiotemporal variability of the water exchange and controlling mechanisms.The results of model simulation indicate that the net average transports of the PC and GC,as well as their linear trend,are opposite to that of the TDC.This indicates that the PC and the GC are the main inflow channels of the AS,while the TDC is the main outflow channel of the AS.The transport variability is most pronounced at surface levels and between 100 m and 200 m depth,likely affected by monsoons and circulation.A 182.4-d semiannual variability is consistently seen in all three channels,which is also evident in their second principal components.Based on sea level anomalies and EOF analysis results,this is primarily due to equatorial winds during the monsoon transition period,causing eastward movement of Kelvin waves along the AS coast,thereby affecting the spatiotemporal characteristics of the flow in the AS.The first EOF of the PC flow field section shows a split at 100 m deep,likely due to topography.The first EOF of the TDC flow field section is steady but has potent seasonal oscillations in its time series.Meanwhile,the first EOF of the GC flow field section indicates a stable surface inflow,probably influenced by the equatorial Indian Ocean’s eastward current.展开更多
Architectural heritage comprises one o the most important elements of mountain settlements in Greece. It holds high cultural value, represents the tangible continuation of the past and forms the unique character and i...Architectural heritage comprises one o the most important elements of mountain settlements in Greece. It holds high cultural value, represents the tangible continuation of the past and forms the unique character and identity of each mountain region. Yet, controversy regarding funding for its preservation often arises. In this paper, we used two Contingent Valuation surveys to estimate the socia benefit deriving from protecting the traditiona architecture in the mountainous village of Sirako and through it, to examine perceptions and attitudes o local residents and visitors. Research findings revealed a strong social will in favor of the good's protection followed by high percentages of positive willingness to pay(WTP). However, WTP is significantly higher among residents. Cultura heritage value, of the good, appears to prevail, along with the environmental one. However, both residents and visitors pointed out that local heritage, if wellpreserved, will boost tourism development. Residents appeared to better recognize the true level o architectural decay, expressed higher apprehension for its protection and were willing to pay higher amount of money. Tourists, on the other side expressed high satisfaction for their visit, appreciated the beauty and serenity emerging from local built and natural environment and spent several days visiting the surrounding area. The longer they stayed and gotfamiliar with the village, the more willing they were to contribute to local heritage's protection. Percentages reflecting indifference for protecting architecture were extremely low. Yet, they were higher among tourists. Traditional architecture is considered as public good; an opinion resulting in an important percentage of visitors stating that national government should provide the necessary funding. In addition, the architecture appears to hold a high level of topicality. Those descending from Sirako or emotionally connected to it, of both social groups,turned out to be more concerned about the good and with a stronger sense of responsibility for it. Usevalue of the good holds high economic value, as well,while higher percentages of zero WTP appeared among non-users. Research findings revealed social attitudes and perceptions on what constitutes architectural heritage, in its cultural and economic frame. If taken under consideration, they may form useful drivers for local, heritage-based, sustainable展开更多
In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional ...In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse;2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.展开更多
In the present work, we investigate threshold characteristics of a single mode 1.55 μm InGaAsP vertical cavity surface emitting laser (VCSEL) with two different optical confinement structures. The device employs InGa...In the present work, we investigate threshold characteristics of a single mode 1.55 μm InGaAsP vertical cavity surface emitting laser (VCSEL) with two different optical confinement structures. The device employs InGaAsP active region, which is sandwiched between GaAs/AlGaAs and GaAs/AlAs distributed Bragg reflectors (DBRs). The optical confinement introduced by the oxide aperture or a single defect photonic crystal design with holes etched throughout the whole structure, is compared with previous work. Photonic crystal VCSEL shows 30.86% and 57.02% lower threshold current than that of the similar oxide confined VCSEL and previous results, respectively. This paper provides key results of the threshold characteristics, including the threshold current and the threshold power. Results suggest that, the 1.55 μm InGaAsP photonic crystal VCSEL seems to be the most optimal one for light sources in high performance optical communication systems.展开更多
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performan...It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.展开更多
In order to discuss the relationship between dolomite reservoirs and diagenetic systems of the Changxing Formation, we studied carbon, oxygen and strontium stable isotopes, iron, manganese and strontium trace elements...In order to discuss the relationship between dolomite reservoirs and diagenetic systems of the Changxing Formation, we studied carbon, oxygen and strontium stable isotopes, iron, manganese and strontium trace elements and the Mg/Ca (mol%) ratio, dolomite order degree, and determined that burial dolomitization is the key to controlling the distribution of high quality dolomite reservoir in the Changxing Formation in the eastern Sichuan Basin. The dolomite of the Changxing Formation is divided into four diagenetic systems: (1) penecontemporaneous stage syngenetic brine diagenetic system, (2) early diagenetic stage strata seal brine diagenetic system, (3) middle-late diagenetic stage mixed hot brine diagenetic system and (4) tectonic uplift stage mixed hydrothermal fluid diagenetic system. New understanding of the controlling factors and distribution of dolomite reservoir development is discussed. Reef shoal facies belts controlled regional reservoir distribution and the scale of development. Burial dolomitization of a strata seal brine diagenetic system is the foundation of reservoir development, mainly developing pore reservoir. Burial dolomitization of mixed hot brine diagenetic system expanded the reservoir distribution and improved the reservoir quality, mainly developing pore-vug reservoir. Fracturing and dissolution of a mixed hydrothermal fluid diagenetic system is the key to improving the reservoir quality, mainly developing pore-vug-crack complex reservoirs.展开更多
Gully systems and watersheds are geomorphic units with clear boundaries that are relatively independent of basin landscapes and play an important role in natural geography. In order to explore the morphological charac...Gully systems and watersheds are geomorphic units with clear boundaries that are relatively independent of basin landscapes and play an important role in natural geography. In order to explore the morphological characteristics of gully systems and watersheds in the Dry-Hot Valley [South West(SW) China], gullies are interpreted from online Google images with high resolution and watersheds are extracted from digital elevation model at a scale of 1:50,000. The results show that:(1) There are17,382 gullies(with a total area of 1141.66 km2) and 42 watersheds in the study area.(2) The average gully density of the study area(D) is 4.29 km/km2, gully frequency(F) is 14.39 gullies/km2, the branching ratio(B) is 5.13, the length ratio(L) is 3.12, and the coefficient of the main and tributary gullies(M) is 0.06. The degree of gully erosion isstrong to extremely strong, the main development intensity of gully erosion ranges from intense to moderate, and the type of gully system is tributary.(3) The watershed areas(A) are between 0.39 and 96.43 km2, the relief ratio(R) is from 0.10 to 0.19, the circularity ratio(C) is from 0.30 to0.83, the texture ratio(T) is from 0.82 to 39.35, and the dominant geomorphological texture type is fine.(4) There is a quantitative relationship between F and D:F = 0.624 D2(R =0.84) and T is closely related to D, F, M(R2[ 0.7). A,R and C are related to M(R2[ 0.5). The development of gully systems is the result of coupling effects between multiple factors. In this area, the degree of erosion and the condition of the main and tributary gullies can be controlled by the degree of topographic breakage in the watershed, which provides some theoretical basis for the evaluation of gully erosion by the latter. In addition, the scale, relief, and shape have a significant impact on the locations of the main and tributary gullies. For tributary gullies, attention should be paid to the interception and control of runoff and sediment in the small confluence branches in order to prevent gully expansion and head advance. These features can inform the development of targeted measures for the control of soil erosion.展开更多
Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are...Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are discussed. The correlation between the pressure systems and hydrocarbon accumulation is addressed by analyzing the corresponding fluid characteristics. The results show that the Huatugou oil field as a whole has low formation pressure and low fluid energy; therefore, the hydrocarbons are hard to migrate, which facilitates the forming of primary reservoirs. The study reservoirs, located at the Xiayoushashan Formation (N1/2) and the Shangganchaigou Formation (N1) are relatively shallow and have medium porosity and low permeability. They are abnormal low-pressure reservoirs with an average formation pressure coefficient of 0.61 and 0.72 respectively. According to the pressure coefficient and geothermal anomaly, the N1 and N1/2 Formations belong to two independent temperature-pressure systems, and the former has slightly higher energy. The low-pressure compartments consist of a distal bar as the main body, prodelta mud as the top boundary, and shore and shallow lake mud or algal mound as the bottom boundary. They are vertically overlapped and horizontally paralleled. The formation water is abundant in the Cl^- ion and can be categorized as CaCl2 type with high safinity, which indicates that the abnormal low-pressure compartments are in good sealing condition and beneficial for oil and gas accumulation and preservation.展开更多
This paper considers the use of the inherent structural characteristics of power system networks for improving the reactive power reserve margins for both topologically weak and strong networks. The inherent structura...This paper considers the use of the inherent structural characteristics of power system networks for improving the reactive power reserve margins for both topologically weak and strong networks. The inherent structural characteristics of the network are derived from the Schur complement of the partitioned Y-admittance matrix using circuit theory representations. Results show that topologically strong networks, operating close to the upper voltage limit could be made to increase their loadability margin by locating reactive power compensators close to generator sources, whereas topologically weak (ill conditioned) networks could be made to operate within the feasible operating limits by locating reactive power compensators on buses farther from generator sources.展开更多
The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sus...The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper.展开更多
A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed...A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed The experimental research which is emphasized on the blowing stroke is also performed It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working Especially it possesses better dynamic characteristics展开更多
Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing syste...Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.展开更多
Full-face hard rock tunnel boring machines(TBM)are essential equipment in highway and railway tunnel engineering construction.During the tunneling process,TBM have serious vibrations,which can damage some of its key c...Full-face hard rock tunnel boring machines(TBM)are essential equipment in highway and railway tunnel engineering construction.During the tunneling process,TBM have serious vibrations,which can damage some of its key components.The support system,an important part of TBM,is one path through which vibrational energy from the cutter head is transmitted.To reduce the vibration of support systems of TBM during the excavation process,based on the structural features of the support hydraulic system,a nonlinear dynamical model of support hydraulic systems of TBM is established.The influences of the component structure parameters and operating conditions parameters on the stiffness characteristics of the support hydraulic system are analyzed.The analysis results indicate that the static stiffness of the support hydraulic system consists of an increase stage,stable stage and decrease stage.The static stiffness value increases with an increase in the clearances.The pre-compression length of the spring in the relief valve a ects the range of the stable stage of the static stiffness,and it does not a ect the static stiffness value.The dynamic stiffness of the support hydraulic system consists of a U-shape and reverse U-shape.The bottom value of the U-shape increases with the amplitude and frequency of the external force acting on the cylinder body,however,the top value of the reverse U-shape remains constant.This study instructs how to design the support hydraulic system of TBM.展开更多
BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as per...BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as perforation and peritonitis.AIM To investigate the predictive value of the systemic immune-inflammation index(SII)combined with the pediatric appendicitis score(PAS)for the assessment of disease severity and surgical outcomes in children aged 5 years and older with appendicitis.METHODS Clinical data of 104 children diagnosed with acute appendicitis were analyzed.The participants were categorized into the acute appendicitis group and chronic appendicitis group based on disease presentation and further stratified into the good prognosis group and poor prognosis group based on prognosis.The SII and PAS were measured,and a joint model using the combined SII and PAS was constructed to predict disease severity and surgical outcomes.RESULTS Significant differences were observed in the SII and PAS parameters between the acute appendicitis group and chronic appendicitis group.Correlation analysis showed associations among the SII,PAS,and disease severity,with the combined SII and PAS model demonstrating significant predictive value for assessing disease severity[aera under the curve(AUC)=0.914]and predicting surgical outcomes(AUC=0.857)in children aged 5 years and older with appendicitis.CONCLUSION The study findings support the potential of integrating the SII with the PAS for assessing disease severity and predicting surgical outcomes in pediatric appendicitis,indicating the clinical utility of the combined SII and PAS model in guiding clinical decision-making and optimizing surgical management strategies for pediatric patients with appendicitis.展开更多
In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carr...In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.展开更多
By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the tem...By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal.展开更多
This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analyti...This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.展开更多
Characteristic urban construction has already become a trend of modern social development,in this context,components of characteristic urban green spaces,and ways of demonstrating features of urban green space system ...Characteristic urban construction has already become a trend of modern social development,in this context,components of characteristic urban green spaces,and ways of demonstrating features of urban green space system were analyzed.Shuangcheng City in Heilongjiang Province was taken for example to analyze planning objectives and principles of characteristic urban green space system.Moreover,the green space layout of "A Hundred Years Old Castle,A Hundred of Enterprises and A Hundred of Gardens" was introduced.It was proposed that green space system planning suited to the development features and ecological conditions of the city should be developed from the perspective of greater regional environment,historical and cultural deposits,urban development pattern and lifestyle of the locals,so as to create urban green space system with regional features.展开更多
Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after ass...Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.展开更多
Based on the eco-economy theory,this paper analyzed the characteristics of the components of eco-economic compound system of karst region in Guizhou Province.The functional characteristics of eco-economic compound sys...Based on the eco-economy theory,this paper analyzed the characteristics of the components of eco-economic compound system of karst region in Guizhou Province.The functional characteristics of eco-economic compound system of karst region in Guizhou Province were analyzed.The functional characteristics were as follows:low biological production of Guizhou Province;weak capacity of ecosystem;slow speed of storage and accumulation of material and serious environmental pollution;low production and efficiency of energy;serious wastes of energy.On the basis of functional characteristics of eco-economic compound System in Karst region.Some views in terms of maintenance and reconstruction of compound system,were put forward,including laying stress on improving ecological system;choosing and cultivating the advanced species that suit the Karst region;improving the amount and speed of material accumulation,at the same time,introducing into advanced production technologies and management experience;reducing the energy efficiency of each section in economic system and improving the transformation efficiency of energy.展开更多
基金The Joint Advanced Marine and Ecological Studies(JAMES)in the Bay of Bengal and eastern equatorial Indian Ocean supported by the Global Change and Air-Sea InteractionⅡProgram under contract Nos GASI-01-EIND-STwin and GASI-04-WLHY-03Zhejiang Provincial Ten Thousand Talents Plan under contract No.2020R52038.
文摘A high-resolution customized numerical model is used to analyze the water transport in the three major water passages between the Andaman Sea(AS)and the Bay of Bengal,i.e.,the Preparis Channel(PC),the Ten Degree Channel(TDC),and the Great Channel(GC),based on the daily averaged simulation results ranging from 2010 to 2019.Spectral analysis and Empirical Orthogonal Function(EOF)methods are employed to investigate the spatiotemporal variability of the water exchange and controlling mechanisms.The results of model simulation indicate that the net average transports of the PC and GC,as well as their linear trend,are opposite to that of the TDC.This indicates that the PC and the GC are the main inflow channels of the AS,while the TDC is the main outflow channel of the AS.The transport variability is most pronounced at surface levels and between 100 m and 200 m depth,likely affected by monsoons and circulation.A 182.4-d semiannual variability is consistently seen in all three channels,which is also evident in their second principal components.Based on sea level anomalies and EOF analysis results,this is primarily due to equatorial winds during the monsoon transition period,causing eastward movement of Kelvin waves along the AS coast,thereby affecting the spatiotemporal characteristics of the flow in the AS.The first EOF of the PC flow field section shows a split at 100 m deep,likely due to topography.The first EOF of the TDC flow field section is steady but has potent seasonal oscillations in its time series.Meanwhile,the first EOF of the GC flow field section indicates a stable surface inflow,probably influenced by the equatorial Indian Ocean’s eastward current.
基金supported by Scientific Research Foundation for Youth Scholars, IGSNRR, CAS, entitled “Evaluation on the conservation and development of agricultural heritage systems in China”
文摘Architectural heritage comprises one o the most important elements of mountain settlements in Greece. It holds high cultural value, represents the tangible continuation of the past and forms the unique character and identity of each mountain region. Yet, controversy regarding funding for its preservation often arises. In this paper, we used two Contingent Valuation surveys to estimate the socia benefit deriving from protecting the traditiona architecture in the mountainous village of Sirako and through it, to examine perceptions and attitudes o local residents and visitors. Research findings revealed a strong social will in favor of the good's protection followed by high percentages of positive willingness to pay(WTP). However, WTP is significantly higher among residents. Cultura heritage value, of the good, appears to prevail, along with the environmental one. However, both residents and visitors pointed out that local heritage, if wellpreserved, will boost tourism development. Residents appeared to better recognize the true level o architectural decay, expressed higher apprehension for its protection and were willing to pay higher amount of money. Tourists, on the other side expressed high satisfaction for their visit, appreciated the beauty and serenity emerging from local built and natural environment and spent several days visiting the surrounding area. The longer they stayed and gotfamiliar with the village, the more willing they were to contribute to local heritage's protection. Percentages reflecting indifference for protecting architecture were extremely low. Yet, they were higher among tourists. Traditional architecture is considered as public good; an opinion resulting in an important percentage of visitors stating that national government should provide the necessary funding. In addition, the architecture appears to hold a high level of topicality. Those descending from Sirako or emotionally connected to it, of both social groups,turned out to be more concerned about the good and with a stronger sense of responsibility for it. Usevalue of the good holds high economic value, as well,while higher percentages of zero WTP appeared among non-users. Research findings revealed social attitudes and perceptions on what constitutes architectural heritage, in its cultural and economic frame. If taken under consideration, they may form useful drivers for local, heritage-based, sustainable
文摘In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse;2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.
文摘In the present work, we investigate threshold characteristics of a single mode 1.55 μm InGaAsP vertical cavity surface emitting laser (VCSEL) with two different optical confinement structures. The device employs InGaAsP active region, which is sandwiched between GaAs/AlGaAs and GaAs/AlAs distributed Bragg reflectors (DBRs). The optical confinement introduced by the oxide aperture or a single defect photonic crystal design with holes etched throughout the whole structure, is compared with previous work. Photonic crystal VCSEL shows 30.86% and 57.02% lower threshold current than that of the similar oxide confined VCSEL and previous results, respectively. This paper provides key results of the threshold characteristics, including the threshold current and the threshold power. Results suggest that, the 1.55 μm InGaAsP photonic crystal VCSEL seems to be the most optimal one for light sources in high performance optical communication systems.
文摘It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.
基金funded by PetroChina Southwest Oil and Gasfield Company Scientific and Technological Projects "The Research of Changxing Organic Reef Bioherm and Reservoir Development Characteristics at Kaijiang-Liangping East Trough" (Number XNYQT-XNS02-2007-TS-5777)
文摘In order to discuss the relationship between dolomite reservoirs and diagenetic systems of the Changxing Formation, we studied carbon, oxygen and strontium stable isotopes, iron, manganese and strontium trace elements and the Mg/Ca (mol%) ratio, dolomite order degree, and determined that burial dolomitization is the key to controlling the distribution of high quality dolomite reservoir in the Changxing Formation in the eastern Sichuan Basin. The dolomite of the Changxing Formation is divided into four diagenetic systems: (1) penecontemporaneous stage syngenetic brine diagenetic system, (2) early diagenetic stage strata seal brine diagenetic system, (3) middle-late diagenetic stage mixed hot brine diagenetic system and (4) tectonic uplift stage mixed hydrothermal fluid diagenetic system. New understanding of the controlling factors and distribution of dolomite reservoir development is discussed. Reef shoal facies belts controlled regional reservoir distribution and the scale of development. Burial dolomitization of a strata seal brine diagenetic system is the foundation of reservoir development, mainly developing pore reservoir. Burial dolomitization of mixed hot brine diagenetic system expanded the reservoir distribution and improved the reservoir quality, mainly developing pore-vug reservoir. Fracturing and dissolution of a mixed hydrothermal fluid diagenetic system is the key to improving the reservoir quality, mainly developing pore-vug-crack complex reservoirs.
基金financial support from the Meritocracy Research Funds of China West Normal University (17YC134, 17YC105)Project of Sichuan Provincial Department of Education and Ecological Security Key Laboratory of Sichuan Province (ESP201301)+1 种基金the Project of Science & Technology Department of Sichuan Province (2018SZ0337, 2017JY0189)the Project of Sichuan Provincial Department of Education (16ZB0182, 18TD0025, 18ZA0465)
文摘Gully systems and watersheds are geomorphic units with clear boundaries that are relatively independent of basin landscapes and play an important role in natural geography. In order to explore the morphological characteristics of gully systems and watersheds in the Dry-Hot Valley [South West(SW) China], gullies are interpreted from online Google images with high resolution and watersheds are extracted from digital elevation model at a scale of 1:50,000. The results show that:(1) There are17,382 gullies(with a total area of 1141.66 km2) and 42 watersheds in the study area.(2) The average gully density of the study area(D) is 4.29 km/km2, gully frequency(F) is 14.39 gullies/km2, the branching ratio(B) is 5.13, the length ratio(L) is 3.12, and the coefficient of the main and tributary gullies(M) is 0.06. The degree of gully erosion isstrong to extremely strong, the main development intensity of gully erosion ranges from intense to moderate, and the type of gully system is tributary.(3) The watershed areas(A) are between 0.39 and 96.43 km2, the relief ratio(R) is from 0.10 to 0.19, the circularity ratio(C) is from 0.30 to0.83, the texture ratio(T) is from 0.82 to 39.35, and the dominant geomorphological texture type is fine.(4) There is a quantitative relationship between F and D:F = 0.624 D2(R =0.84) and T is closely related to D, F, M(R2[ 0.7). A,R and C are related to M(R2[ 0.5). The development of gully systems is the result of coupling effects between multiple factors. In this area, the degree of erosion and the condition of the main and tributary gullies can be controlled by the degree of topographic breakage in the watershed, which provides some theoretical basis for the evaluation of gully erosion by the latter. In addition, the scale, relief, and shape have a significant impact on the locations of the main and tributary gullies. For tributary gullies, attention should be paid to the interception and control of runoff and sediment in the small confluence branches in order to prevent gully expansion and head advance. These features can inform the development of targeted measures for the control of soil erosion.
基金fmancially supported by the National Natural Science Foundation of China(No.40802027)the PetroChina Innovation Fund(No.0706d01040102)
文摘Based on the comprehensive study of core samples, well testing data, and reservoir fluid properties, the construction and the distribution of the abnormal pressure systems of the Huatugou oil field in Qaidam Basin are discussed. The correlation between the pressure systems and hydrocarbon accumulation is addressed by analyzing the corresponding fluid characteristics. The results show that the Huatugou oil field as a whole has low formation pressure and low fluid energy; therefore, the hydrocarbons are hard to migrate, which facilitates the forming of primary reservoirs. The study reservoirs, located at the Xiayoushashan Formation (N1/2) and the Shangganchaigou Formation (N1) are relatively shallow and have medium porosity and low permeability. They are abnormal low-pressure reservoirs with an average formation pressure coefficient of 0.61 and 0.72 respectively. According to the pressure coefficient and geothermal anomaly, the N1 and N1/2 Formations belong to two independent temperature-pressure systems, and the former has slightly higher energy. The low-pressure compartments consist of a distal bar as the main body, prodelta mud as the top boundary, and shore and shallow lake mud or algal mound as the bottom boundary. They are vertically overlapped and horizontally paralleled. The formation water is abundant in the Cl^- ion and can be categorized as CaCl2 type with high safinity, which indicates that the abnormal low-pressure compartments are in good sealing condition and beneficial for oil and gas accumulation and preservation.
文摘This paper considers the use of the inherent structural characteristics of power system networks for improving the reactive power reserve margins for both topologically weak and strong networks. The inherent structural characteristics of the network are derived from the Schur complement of the partitioned Y-admittance matrix using circuit theory representations. Results show that topologically strong networks, operating close to the upper voltage limit could be made to increase their loadability margin by locating reactive power compensators close to generator sources, whereas topologically weak (ill conditioned) networks could be made to operate within the feasible operating limits by locating reactive power compensators on buses farther from generator sources.
基金This work was funded by Beijing Key Laboratory of Distribution Transformer Energy-Saving Technology(China Electric Power Research Institute).
文摘The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper.
文摘A new typed hydraulic system of electro hydraulic hammer is researched and developed By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed The experimental research which is emphasized on the blowing stroke is also performed It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working Especially it possesses better dynamic characteristics
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026000)
文摘Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.
基金Supported by National Key R&D Program of China(Grant No.2018YFB1702503)National Program on Key Basic Research Project of China(973 Program,Grant No.2013CB035403)Startup Fund for Youngman Research at SJTU(SFYR at SJTU)
文摘Full-face hard rock tunnel boring machines(TBM)are essential equipment in highway and railway tunnel engineering construction.During the tunneling process,TBM have serious vibrations,which can damage some of its key components.The support system,an important part of TBM,is one path through which vibrational energy from the cutter head is transmitted.To reduce the vibration of support systems of TBM during the excavation process,based on the structural features of the support hydraulic system,a nonlinear dynamical model of support hydraulic systems of TBM is established.The influences of the component structure parameters and operating conditions parameters on the stiffness characteristics of the support hydraulic system are analyzed.The analysis results indicate that the static stiffness of the support hydraulic system consists of an increase stage,stable stage and decrease stage.The static stiffness value increases with an increase in the clearances.The pre-compression length of the spring in the relief valve a ects the range of the stable stage of the static stiffness,and it does not a ect the static stiffness value.The dynamic stiffness of the support hydraulic system consists of a U-shape and reverse U-shape.The bottom value of the U-shape increases with the amplitude and frequency of the external force acting on the cylinder body,however,the top value of the reverse U-shape remains constant.This study instructs how to design the support hydraulic system of TBM.
文摘BACKGROUND Pediatric appendicitis is a common cause of abdominal pain in children and is recognized as a significant surgical emergency.A prompt and accurate diagnosis is essential to prevent complications such as perforation and peritonitis.AIM To investigate the predictive value of the systemic immune-inflammation index(SII)combined with the pediatric appendicitis score(PAS)for the assessment of disease severity and surgical outcomes in children aged 5 years and older with appendicitis.METHODS Clinical data of 104 children diagnosed with acute appendicitis were analyzed.The participants were categorized into the acute appendicitis group and chronic appendicitis group based on disease presentation and further stratified into the good prognosis group and poor prognosis group based on prognosis.The SII and PAS were measured,and a joint model using the combined SII and PAS was constructed to predict disease severity and surgical outcomes.RESULTS Significant differences were observed in the SII and PAS parameters between the acute appendicitis group and chronic appendicitis group.Correlation analysis showed associations among the SII,PAS,and disease severity,with the combined SII and PAS model demonstrating significant predictive value for assessing disease severity[aera under the curve(AUC)=0.914]and predicting surgical outcomes(AUC=0.857)in children aged 5 years and older with appendicitis.CONCLUSION The study findings support the potential of integrating the SII with the PAS for assessing disease severity and predicting surgical outcomes in pediatric appendicitis,indicating the clinical utility of the combined SII and PAS model in guiding clinical decision-making and optimizing surgical management strategies for pediatric patients with appendicitis.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.
文摘By analyzing the heavy fog data in Chizhou City in recent 50 years(1959-2007),the general rules of meteorological elements variations were found when the heavy fog happened.The meteorological elements included the temperature,humidity,wind direction,wind speed,air pressure and so on.The conceptual models of high-altitude and ground situation were established when the heavy fog happened in Chizhou City.Based on considering sufficiently the special geographical environment in Chizhou City,we found the key factors which affected the local heavy fog via the relative analyses.By using the statistical forecast methods which included the second-level judgment method and regression method of event probability and so on,the forecast mode equation of heavy fog was established.Moreover,the objective forecast system of heavy fog in Chizhou City was also manufactured.It provided the basis and platform which could be referred for the heavy fog forecast,service and the release of early-warning signal.
基金973 Program under Grant under Grant No.2012CB723304It was partially supported by the Major Research Plan of the National Natural Science Foundation of China under Grant No.91315301-07+2 种基金in part by Program for Changjiang Scholars and Innovative Research Team in University under Grant No.IRT13057the Ministry of Education Program for New Century Excellent Talents in University under Grant No.NCET-11-0914the Guangzhou Ram Scholar Program Grant No.10A032D
文摘This paper presents exact analytical solutions for a novel damped outrigger system, in which viscous dampers are vertically installed between perimeter columns and the core of a high-rise building. An improved analytical model is developed by modeling the effect of the damped outrigger as a general rotational spring acting on a Bernoulli-Euler beam. The equivalent rotational spring stiffness incorporating the combined effects of dampers and axial stiffness of perimeter columns is derived. The dynamic stiffness method(DSM) is applied to formulate the governing equation of the damped outrigger system. The accuracy and effi ciency are verifi ed in comparison with those obtained from compatibility equations and boundary equations. Parametric analysis of three non-dimensional factors is conducted to evaluate the infl uences of various factors, such as the stiffness ratio of the core to the beam, position of the damped outrigger, and the installed damping coeffi cient. Results show that the modal damping ratio is signifi cantly infl uenced by the stiffness ratio of the core to the column, and is more sensitive to damping than the position of the damped outrigger. The proposed analytical model in combination with DSM can be extended to the study of structures with more outriggers.
文摘Characteristic urban construction has already become a trend of modern social development,in this context,components of characteristic urban green spaces,and ways of demonstrating features of urban green space system were analyzed.Shuangcheng City in Heilongjiang Province was taken for example to analyze planning objectives and principles of characteristic urban green space system.Moreover,the green space layout of "A Hundred Years Old Castle,A Hundred of Enterprises and A Hundred of Gardens" was introduced.It was proposed that green space system planning suited to the development features and ecological conditions of the city should be developed from the perspective of greater regional environment,historical and cultural deposits,urban development pattern and lifestyle of the locals,so as to create urban green space system with regional features.
基金supported by National Natural Science Foundation of China(Grant No.50835001)Research and Innovation Teams Foundation Project of Ministry of Education of China(Grant No.IRT0610)Liaoning Provincial Key Laboratory Foundation Project of China(Grant No.20060132)
文摘Synthesis characteristics of the electro-hydraulic servo valve are key factors to determine eligibility of the hydraulic production. Testing all synthesis characteristics of the electro-hydraulic servo valve after assembling leads to high repair rate and reject rate, so accurate prediction for the synthesis characteristics in the industrial production is particular important in decreasing the repair rate and the reject rate of the product. However, the research in forecasting synthesis characteristics of the electro-hydraulic servo valve is rare. In this work, a hybrid prediction method was proposed based on rough set(RS) and adaptive neuro-fuzzy inference system(ANFIS) in order to predict synthesis characteristics of electro-hydraulic servo valve. Since the geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve are from workers' experience, the inputs of the prediction method are uncertain. RS-based attributes reduction was used as the preprocessor, and then the exact geometric factors affecting the synthesis characteristics of the electro-hydraulic servo valve were obtained. On the basis of the exact geometric factors, ANFIS was used to build the final prediction model. A typical electro-hydraulic servo valve production was used to demonstrate the proposed prediction method. The prediction results showed that the proposed prediction method was more applicable than the artificial neural networks(ANN) in predicting the synthesis characteristics of electro-hydraulic servo valve, and the proposed prediction method was a powerful tool to predict synthesis characteristics of the electro-hydraulic servo valve. Moreover, with the use of the advantages of RS and ANFIS, the highly effective forecasting framework in this study can also be applied to other problems involving synthesis characteristics forecasting.
文摘Based on the eco-economy theory,this paper analyzed the characteristics of the components of eco-economic compound system of karst region in Guizhou Province.The functional characteristics of eco-economic compound system of karst region in Guizhou Province were analyzed.The functional characteristics were as follows:low biological production of Guizhou Province;weak capacity of ecosystem;slow speed of storage and accumulation of material and serious environmental pollution;low production and efficiency of energy;serious wastes of energy.On the basis of functional characteristics of eco-economic compound System in Karst region.Some views in terms of maintenance and reconstruction of compound system,were put forward,including laying stress on improving ecological system;choosing and cultivating the advanced species that suit the Karst region;improving the amount and speed of material accumulation,at the same time,introducing into advanced production technologies and management experience;reducing the energy efficiency of each section in economic system and improving the transformation efficiency of energy.